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We study f2Qþ 1g strings connecting two static charges Q in ð2þ 1ÞD SUð2Þ Yang-Mills theory.

While the fundamental f2g string between two charges Q ¼ 1
2 is unbreakable, the adjoint f3g string

connecting two charges Q ¼ 1 can break. When a f4g string is stretched beyond a critical length, it decays
into a f2g string by gluon pair creation. When a f5g string is stretched, it first decays into a f3g string, which
eventually breaks completely. The energy of the screened charges at the ends of a string is well described

by a phenomenological constituent gluon model.
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Studies of the strings connecting two static color charges
provide valuable insights into the physics of confinement
in SUðNÞ Yang-Mills theories. The properties of the string
connecting a static quark-antiquark pair with charges in the
fundamental fNg and f �Ng representations are described by
a low-energy effective bosonic string theory. While the
string tension � determines the quark-antiquark potential
VðrÞ ¼ �r at asymptotic distances, the massless modes
corresponding to transverse fluctuations of the string give
rise to the universal Lüscher term proportional to 1=r [1,2],
as well as to a diverging string thickness proportional to
logr [3]. The effective string theory also makes detailed
predictions for the excited states of the string [4]. Lattice
gauge theory provides us with a powerful tool for inves-
tigating the string dynamics using Monte Carlo simula-
tions. In this way, the linearly rising quark-antiquark
potential has been calculated at large distances [5]. By
developing a highly efficient multilevel simulation tech-
nique [6], Lüscher and Weisz have studied the univer-
sal 1=r term in the quark-antiquark potential at large
distances [7].

In theories with dynamical fundamental charges, the
confining string connecting two static color charges can
break due to the creation of dynamical charge-anticharge
pairs which screen the external static sources. Numerical
evidence for charge screening was obtained in a lattice
gauge-Higgs model in which the dynamical fundamental
charges are scalars [8]. Direct evidence for string breaking
was first observed in the SUð2Þ gauge-Higgs model [9,10]
and later also in the Zð2Þ gauge-Higgs model [11]. While
the fundamental string is unbreakable in SUðNÞ Yang-
Mills theory, the string connecting static adjoint charges
can break due to pair creation of dynamical gluons. This
effect has been investigated in Refs. [12–18]. Numerical
evidence for string breaking in lattice QCDwith dynamical
quarks has been observed in Ref. [19]. The center symme-
try of SUðNÞ Yang-Mills theory is ZðNÞ. Consequently,

each SUðNÞ representation and hence each external static
charge can be characterized by its N-ality k ¼
f0; 1; . . . ; N � 1g. Strings connecting external charges
with N-ality k � 0 are known as k strings. These strings
are unbreakable and have a k-dependent string tension,
which may or may not be proportional to the Casimir
operator of the corresponding representation [20,21].
Since it is easiest to simulate numerically, in this Letter

we study the dynamics of strings in ð2þ 1ÞD SUð2Þ Yang-
Mills theory which has the center Zð2Þ. Other theories in
(3þ 1) dimensions or with other gauge groups are ex-
pected to show similar behavior. Here we investigate the
strings connecting two static charges Q in the SUð2Þ
representation f2Qþ 1g, which we refer to as f2Qþ 1g
strings, not to be confused with k strings. The f2Qþ 1g
strings with integerQ have k ¼ 0 and will eventually break
at large distances, while the f2Qþ 1g strings with half-
integer Q have k ¼ 1 and are unbreakable. At asymptotic
distances, all f2Qþ 1g strings connecting half-integer
charges have the same tension � as the fundamental f2g
string. Since SUð2Þ Yang-Mills theory has no dynamical
fundamental charges, the static charges Q at the two ends
of a f2Qþ 1g string can be screened only by dynamical
gluons. When a pair of gluons is created from the vacuum,
the external sources are screened and thus reduced to Q�
1. As a consequence, the f2Qþ 1g string decays to a
f2Q� 1g string and abruptly reduces its tension accord-
ingly [22,23]. While some numerical evidence for string
decay was presented in Ref. [24], using the multilevel
simulation technique of Ref. [6], we are able, for the first
time, to investigate string decay in detail.
We consider ð2þ 1ÞD SUð2Þ Yang-Mills theory on a

cubic lattice using the standard Wilson plaquette action for
link variables in the fundamental representation. The ex-
ternal color charges Q at the two ends of a string are
represented by Polyakov loops �QðxÞ in the f2Qþ 1g
representation wrapping around the Euclidean time direc-
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tion. The corresponding potential VQðrÞ between the static

sources is extracted from the Polyakov loop correlator

h�Qð0Þ�QðrÞi � exp½��VQðrÞ�: (1)

In order to ensure a good projection on the ground state of
the string, we have simulated at inverse temperatures as
large as � ¼ 64. Note that we quote all dimensionful
quantities in units of the lattice spacing. The spatial lattice
size was L ¼ 32, and the bare gauge coupling was chosen
as 4=g2 ¼ 6:0, which puts the deconfinement phase tran-
sition at �c � 4. While this is a moderate coupling, we are
confident that our results remain unchanged, at least quali-
tatively, in the continuum limit. The values of the simulated
Polyakov loop correlators range from 10�8 to 10�135.
Measuring such small signals would be completely impos-
sible without the Lüscher-Weisz multilevel simulation
technique. We have slightly refined this method by apply-
ing the segmentation of the lattice not only to slabs in time
but also to blocks in space. By carefully tuning the pa-
rameters of the multilevel algorithm, we have been able to
extract the potentials VQðrÞ for the f2g, f3g, f4g, and f5g
strings. As shown in the top panel of Fig. 1, at distance r �
8, the f4g string decays, thus reducing its tension to the one
of the fundamental f2g string. Similarly, the bottom panel

shows that, at distance r � 6, the f5g string decays and
reduces its tension to the one of the adjoint f3g string. Only
at r � 10 the string breaks completely, at about the same
distance as the adjoint f3g string. Not unexpectedly, the
tension of a string is the same, no matter whether it con-
nects screened or unscreened external charges Q.
A fit of the fundamental potential to

V1=2ðrÞ ¼ �r� �

24r
þ 2MþOð1=r3Þ (2)

works very well and yields the asymptotic string tension
� ¼ 0:063 97ð3Þ. In particular, the Monte Carlo data are in
excellent agreement with the predicted coefficient � �

24 of

the Lüscher term. The ‘‘mass’’ contribution of an external
charge Q ¼ 1

2 to the total energy of the system is given by

M ¼ 0:109ð1Þ. This mass itself is not physical because it
contains ultraviolet divergent pieces. Since string decay
occurs at moderate distances, its typical energy scale is not
well separated from �QCD. Consequently, unlike the string

behavior at asymptotic distances, string decay cannot be
addressed in a fully systematic low-energy effective string
theory. In particular, unlike the string tension � of the
unbreakable fundamental string, the tension �Q of an

ultimately unstable f2Qþ 1g string (with Q � 1) is not
defined unambiguously. Here we define �Q by a fit of the

Monte Carlo data to a simple phenomenological model. In
this model, we consider the f2Qþ 1g string as a multi-
channel system. A channel containing a f2Qþ 1g string
connecting two chargesQ, which resulted from screening a
larger charge Qþ n by n gluons, has the energy

EQ;nðrÞ ¼ �Qr�
cQ
r
þ 2MQ;n: (3)

Here cQ is the coefficient of a subleading 1=r correction

which does not necessarily assume the asymptotic Lüscher
value� �

24 . The massMQ;n describes the contribution of an

original charge Qþ n that has been screened to the value
Q by n gluons. Just as the mass M ¼ M1=2;0, the masses

MQ;n themselves are not physical, because they again

contain ultraviolet divergent contributions. However, the
mass differences �Q;n ¼ MQ�1;nþ1 �MQ;n are physical

since the divergent pieces then cancel. The f3g and f4g
strings are described by the two-channel Hamiltonians
H1 and H3=2, while the f5g string is described by the

three-channel Hamiltonian H2, with

H1ðrÞ ¼
E1;0ðrÞ A

A E0;1ðrÞ

 !
;

H3=2ðrÞ ¼
E3=2;0ðrÞ B

B E1=2;1ðrÞ

 !
;

H2ðrÞ ¼
E2;0ðrÞ C 0

C E1;1ðrÞ A

0 A E0;2ðrÞ

0
BB@

1
CCA:

(4)

Here A, B, andC are decay amplitudes which we assume to
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FIG. 1 (color online). Top: Potential VðrÞ of two static color
charges with Q ¼ 1

2 (squares) and Q ¼ 3
2 (stars), shifted by a

constant for a more convenient comparison of the slopes.
Bottom: The same for Q ¼ 1 (squares) and Q ¼ 2 (stars). The
lines are a fit of the multichannel model to the Monte Carlo data.
The horizontal band at 2M0;2 ¼ 4:84ð2Þ corresponds to twice the
mass of a source of charge Q ¼ 2 obtained from the measure-
ment of a single Polyakov loop.
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be r-independent. The potential VQðrÞ is the energy of the

ground state of HQ. Figure 2 compares the forces FðrÞ ¼
�dVðrÞ=dr in the f2g, f3g, f4g, and f5g string cases with the
results of the multichannel model. The tensions �Q listed

in Table I have been determined by a fit to the Monte Carlo
data. The simple model works rather well. It is interesting
to note that the ratios �Q=� do not obey Casimir scaling;

i.e., they are not equal to 4QðQþ 1Þ=3. The masses MQ;n

are listed in Table II. Remarkably, within the error bars, the
mass differences �Q;0 ¼ MQ�1;1 �MQ;0 all take the same

value MG ¼ 0:65ð5Þ, independent of Q. We interpret MG

as a constituent gluon mass which in units of the string
tension takes the value MG=

ffiffiffiffi
�

p ¼ 2:6ð2Þ. It should be
pointed out that, in contrast to the string tension, MG is
not unambiguously defined. It just results from the fit
parameters of the phenomenological model. The value
�1;1 ¼ M0;2 �M1;1 ¼ 0:71ð3Þ indicates that the addition

of a second constituent gluon costs an energy slightly
larger than MG. Interestingly, the mass of two constituent
gluons 2MG=

ffiffiffiffi
�

p ¼ 1:3ð1Þ is close to the 0þ glueball mass
M0þ=

ffiffiffiffi
�

p ¼ 1:198ð25Þ obtained in Ref. [25] at the same
value of the bare coupling. MG also sets the distance scale
for string decay and string breaking. A leading order
estimate for the distance at which the f4g string decays

into the f2g string is r � 2MG=ð�3=2 � �1=2Þ ¼ 7:3ð6Þ,
while the distance at which the f3g and the f5g strings
ultimately break is estimated to be around r � 2MG=�1 ¼
9:0ð7Þ.
String decay can be viewed as a quantum analogue of the

classical process of strand rupture in a cable consisting of a
bundle of strands. When such a cable is stretched further
and further, individual strands eventually rupture, thereby
abruptly reducing the tension of the cable. While strand
rupture is well-known in the material science of
centimeter-thick steel cables with a tension of about 105

Newton, we have seen that a similar process occurs for the
confining strings in non-Abelian gauge theories which
have about the same tension but are 13 orders of magnitude
thinner. Whether a strand picture may correctly describe
the actual anatomy of decaying f2Qþ 1g strings is an
interesting question that will require further investigations
which go beyond the scope of the present Letter.
It would be interesting to investigate string decay and

string breaking for other SUðNÞ gauge theories. In SUð3Þ
Yang-Mills theory, the f3g string connecting a quark in the
f3g with an antiquark in the f�3g representation is unbreak-
able, while the f8g string connecting two adjoint sources
can break by pair creation of gluons. When a f6g string is
stretched, the external source in the f6g representation will
eventually be screened to a f�3g by a gluon. The correspond-
ing string decay should be analogous to the decay of the f4g
string in SUð2Þ Yang-Mills theory discussed above. In
analogy to the f5g string in SUð2Þ, the f10g string in
SUð3Þ Yang-Mills theory is expected to decay to an adjoint
f8g string, before it breaks completely at larger distances.
In QCD with dynamical quarks, strings can also decay by
quark-antiquark pair creation. Because of its Zð4Þ cen-
ter symmetry, SUð4Þ Yang-Mills theory has two distinct
unbreakable strings, connecting external charges either in
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FIG. 2 (color online). Top: Forces FðrÞ that the f2g and f4g
strings exert on the external charges Q ¼ 1

2 (squares) and Q ¼ 3
2

(stars), respectively. Bottom: The same for the f3g and f5g strings
connecting external charges Q ¼ 1 (squares) and Q ¼ 2 (stars),
respectively. The lines represent the fit of the multichannel
model to the Monte Carlo data.

TABLE I. Fitted values of the string tensions �Q. The ratio
�Q=�, with � ¼ �1=2, is compared with the value 4QðQþ 1Þ=3
representing Casimir scaling.

Q �Q �Q=� 4QðQþ 1Þ=3
1=2 0.063 97(3) 1 1

1 0.144(1) 2.25(2) 8=3
3=2 0.241(5) 3.77(8) 5

2 0.385(5) 6.02(8) 8

TABLE II. Fitted values of the massMQ;n of an original charge
Qþ n that has been screened to the value Q by n gluons,
together with the differences �Q;n ¼ MQ�1;nþ1 �MQ;n.

Q MQ;0 MQ�1;1 MQ�2;2 �Q;0 �Q�1;1

1=2 0.109(1) � � � � � � � � � � � �
1 0.37(3) 1.038(1) � � � 0.67(3) � � �
3=2 0.72(5) 1.32(5) � � � 0.60(5) � � �
2 1.04(3) 1.71(3) 2.42(1) 0.67(3) 0.71(3)
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the f4g and f�4g or in the f6g representation. For external
sources with nontrivial N-ality, one then expects cascades
of string decays down to the f4g string for k ¼ 1; 3 and
down to the f6g string for k ¼ 2.

Studying gauge groups other than SUðNÞ would also be
interesting. For example, all SpðNÞ gauge theories have the
same center Zð2Þ. The first Lie group in this sequence is
Spð1Þ ¼ SUð2Þ ¼ spinð3Þ, while the second is Spð2Þ ¼
spinð5Þ, the universal covering group of SOð5Þ. In Spð2Þ
Yang-Mills theory, only the fundamental f4g string is ab-
solutely stable. As usual, the adjoint f10g string can break
by pair creation of gluons. The representation f5g is center-
neutral. Since in Spð2Þ

f5g � f10g ¼ f5g � f10g � f35g; (5)

a single gluon can screen a charge f5g only to a f10g or a
f35g. We expect the unstable f5g string to have a smaller
tension than the adjoint f10g string or the f35g string. In that
case, the f5g string will break in one step by the creation of
four gluons, without any intermediate string decay.

Finally, it would be interesting to investigate the impor-
tance of the center for the phenomenon of string decay. The
exceptional group Gð2Þ is the simplest Lie group with a
trivial center. Still, Gð2Þ Yang-Mills theory confines color
(although without an asymptotic string tension) [26].
Furthermore, it has a first-order deconfinement phase tran-
sition [27,28]. In fact, as we have discussed in the context
of SpðNÞ Yang-Mills theories, the order of the deconfine-
ment phase transition is controlled by the size of the gauge
group and not by the center [29]. In Gð2Þ Yang-Mills
theory, even a charge in the fundamental f7g representation
can be screened by gluons in the adjoint f14g representa-
tion. As a result, there are no unbreakable strings. Since
in Gð2Þ

f7g � f14g ¼ f7g � f27g � f64g; (6)

a single gluon can screen a charge f7g only to a f27g or a
f64g. In Gð2Þ Yang-Mills theory, approximate Casimir
scaling has been verified for unstable strings including
the f27g and the f64g strings [30]. As a consequence, the
fundamental f7g string is stable against decay due to the
creation of a single pair of gluons. The same is true even
for processes involving four gluons. Based on the group
theory of Gð2Þ, we expect the fundamental f7g string to
break due to the simultaneous creation of six gluons,
without any intermediate string decay.

Using the Lüscher-Weisz multilevel algorithm, studying
string decay in SUð3Þ, SUð4Þ, Spð2Þ,Gð2Þ, and other Yang-
Mills theories is interesting and definitely feasible. One
may also ask whether string decay can be studied analyti-
cally in supersymmetric theories.
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