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We study an inflationary scenario with a vector field coupled with an inflaton field and show that the

inflationary Universe is endowed with anisotropy for a wide range of coupling functions. This anisotropic

inflation is a tracking solution where the energy density of the vector field follows that of the inflaton field

irrespective of initial conditions. We find a universal relation between the anisotropy and a slow-roll

parameter of inflation. Our finding has observational implications and gives a counterexample to the

cosmic no-hair conjecture.
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Introduction.—Recent developments of precision cos-
mology have yielded a slight shift of an inflationary para-
digm [1]. Before precision cosmology, zeroth order
predictions of inflationary scenarios were sufficient.
Indeed, curvature fluctuations had been supposed to be
statistically homogeneous, isotropic, Gaussian and almost
scale invariant. However, because of progress in observa-
tions, we are now forced to look at fine structures of
fluctuations such as spectral tilt, non-Gaussianity, parity
violation, and so on [2]. In fact, we need theoretical pre-
dictions at a percent level. Those precise predictions of
inflationary scenarios will provide a clue to understand
fundamental physics such as superstring theory when
they are compared with observations.

In this Letter, we focus on a role of a vector field in the
early Universe [3]. Of course, no one doubts existence of
vector fields. At the same time, it is widely believed vector
hair will disappear during the inflation conforming to the
cosmic no-hair conjecture [4]. However, recently, it has
been shown that anisotropic hair in the inflationary
Universe can exist [5,6], although there may be perturba-
tive instability in this specific realization [7]. Hence, it is
worth seeking other models. At this point, we should recall
that primordial magnetic fields are produced during infla-
tion [8]. For example, the nonminimal kinetic term of
vector fields in supergravity can be used to generate the
primordial cosmological magnetic fields [9]. This fact
suggests that we have a vector hair during inflation.
Here, there is prejudice that the vector hair is negligibly
small and it is legitimate to ignore the backreaction of
magnetic fields to geometry. However, in the context of
the precision cosmology, we should not neglect the back-
reaction if it is around a percent level [10]. Hence, it is
important to quantify how small it is. Based on this ob-
servation, we study an inflationary scenario where the
inflaton is coupled with the kinetic term of a massless
vector field. Apparently, our model is free from instability.
Interestingly, we find a tracking behavior of the energy

density of the vector field. As a consequence, we show that
there exist sizable vector hair quite generally. That yields a
percent level anisotropic inflation.
It should be stressed that the presence of the vector hair

in the early Universe breaks the rotational invariance and
therefore provides various interesting phenomenological
consequences [11]. Moreover, anisotropic inflation might
give rise to a percent level correlation between primordial
gravitational waves and cosmic microwave background
radiations (CMB), which might be testable by CMB ob-
servations near future [6]. Therefore, ‘‘hairy inflation’’ is
phenomenologically rich.
Basic equations.—We consider the following action for

the gravitational field, the inflaton field � and the vector
field A� coupled with �:

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
1

2�2
R� 1

2
ð@��Þð@��Þ � Vð�Þ

� 1

4
f2ð�ÞF��F

��

�
; (1)

where g is the determinant of the metric, R is the Ricci
scalar, Vð�Þ is the inflaton potential, fð�Þ is the coupling
function of the inflaton field to the vector one, respectively.
The field strength of the vector field is defined by F�� ¼
@�A� � @�A�. Thanks to the gauge invariance, we can

choose the gauge A0 ¼ 0. Without loss of generality, we
can take x axis in the direction of the vector. Hence, we
take the homogeneous fields of the form A� ¼
ð0; AxðtÞ; 0; 0Þ and � ¼ �ðtÞ. Note that we have assumed
the direction of the vector field does not change in time, for
simplicity. This field configuration holds the plane sym-
metry in the plane perpendicular to the vector. Then, we
take the metric to be

ds2 ¼ �dt2 þ e2�ðtÞ½e�4�ðtÞdx2 þ e2�ðtÞðdy2 þ dz2Þ�;
(2)

where the cosmic time t is used. Here, e� is an isotropic
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scale factor and � represents a deviation from the isotropy.
With above ansatz, one obtains the equation of motion for
the vector field which is easily solved as

_A x ¼ f�2ð�Þe���4�pA; (3)

where an overdot denotes the derivative with respect to the
cosmic time t and pA denotes a constant of integration.
Substituting (3) into other equations, we obtain basic equa-
tions

_� 2 ¼ _�2 þ �2

3

�
1

2
_�2 þ Vð�Þ þ p2

A

2
f�2ð�Þe�4��4�

�
;

(4)

€� ¼ �3 _�2 þ �2Vð�Þ þ �2p2
A

6
f�2ð�Þe�4��4�; (5)

€� ¼ �3 _� _�þ�2p2
A

3
f�2ð�Þe�4��4�; (6)

€� ¼ �3 _� _��V0ð�Þ þ p2
Af

�3ð�Þf0ð�Þe�4��4�; (7)

where a prime denotes the derivative with respect to �.
From Eq. (4), we see the effective potential Veff ¼ V þ

p2
Af

�2e�4��4�=2 determines the inflaton dynamics. As the
second term is coming from the vector contribution, we
refer it to the energy density of the vector. Let us check if
inflation occurs in this model. Using Eqs. (4) and (5), the
equation for the acceleration of the Universe is given by

€�þ _�2 ¼ �2 _�2 � �2

3
_�2 þ �2

3

�
V � p2

A

2
f�2e�4��4�

�
:

(8)

We see that the potential energy of the inflaton needs to be
dominant for the inflation to occur. Now, we assume the
energy density of the vector can be negligible compared to
that of the inflaton for the inflaton dynamics. Then, we
examine when the anisotropy is not diluted during infla-
tion. From Eq. (6), it is apparent that the fate of anisotropic
expansion rate� � _� depends on the behavior of coupling
function fð�Þ. In the critical case fð�Þ / e�2�, the energy
density of the vector field as a source term in Eq. (6)
remains almost constant during the slow-roll inflation.
Using slow-roll equations

_� 2 ¼ �2

3
Vð�Þ; 3 _� _� ¼ �V 0ð�Þ; (9)

we obtain d�=d� ¼ _�= _� ¼ ��2Vð�Þ=V0ð�Þ. This can
be easily integrated as � ¼ ��2

R
V=V 0d�. Here, we have

absorbed a constant of integration into the definition of �.
Thus, we obtain

f ¼ e�2� ¼ e2�
2
R
ðV=V0Þd�: (10)

For the polynomial potential V / �n, we have f ¼

e�
2�2=n. Given the critical case (10), we can parameterize

the coupling function as [9]:

f ¼ e2c�
2
R
ðV=V 0Þd�; (11)

where c is a parameter.
Naively, the energy density of the vector field grows

during inflation when c > 1, which is the case we want to
consider. It would not be possible to neglect the vector field
in this case, and Eq. (9) would not be appropriate for
discussing the inflation dynamics anymore. Let us see
what happens if the vector field is not negligible.
Tracking anisotropic inflation.—To make the analysis

concrete, we consider chaotic inflation with the potential
Vð�Þ ¼ m2�2=2 (n ¼ 2). For this potential, the coupling

function becomes fð�Þ ¼ ec�
2�2=2. It is instructive to see

what happens by solving Eqs. (4)–(7) numerically. In

Fig. 1, we have shown the phase flow in �� _� space
where we can see two slow-roll phases, which indicates
something different from the conventional inflation occurs.
In Fig. 2, we have calculated the evolution of the anisot-
ropy �=H � _�= _� for various parameters c under the
initial conditions

ffiffiffi
c

p
��i ¼ 17. As expected, all of solu-

tions show a rapid growth of anisotropy in the first slow-
roll phase. However, the growth of the anisotropy even-
tually stops at the order of a percent. Notice that this
attractor like behavior is not so sensitive to a parameter c.
Now, we will give an analytic explanation of the nu-

merical results and find a quite remarkable relation be-
tween the anisotropy and a slow-roll parameter of inflation.
As the energy density of the vector field should be sub-

dominant during inflation, we can ignore � in Eqs. (4), (5),
and (7). However, in Eq. (6), all terms would be of the same
order. Now, Eqs. (4) and (7) can be written as
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FIG. 1 (color online). Phase flow for � is depicted. Here, we
took the parameters c ¼ 2 and �m ¼ 10�5. We also put initial
conditions �i ¼ 12 and _�i ¼ 0. There are two different slow-
roll phases. The transition occurs around �� ¼ 9.

PRL 102, 191302 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending
15 MAY 2009

191302-2



_� 2 ¼ �2

3

�
1

2
_�2 þ 1

2
m2�2 þ 1

2
e�c�2�2�4�p2

A

�
; (12)

€� ¼ �3 _� _��m2�þ c�2�e�c�2�2�4�p2
A: (13)

Let us see how the energy density of the vector field works
in these equations. When the effect of the vector field is
comparable with that of the inflaton field as source terms in

(13), we get the relation c�2p2
Ae

�c�2�2�4� �m2. If we
define the ratio of the energy density of the vector field

�A � p2
Ae

�c�2�2�4�=2 to that of the inflaton �� �
m2�2=2 as

R � �A

��

¼ p2
Ae

�c�2�2�4�

m2�2
; (14)

we find the ratio becomes R� 1=c�2�2 when the above
relation holds. Since the e-folding number is crudely given
by N � �2�2 and the scale observed through CMB corre-
sponds to N �Oð100Þ, we have typically ���Oð10Þ.
Hence, the ratio goes R� 10�2. Thus we find that the
effect of the vector filed in (12) is negligible even when it is
comparable with that of the scalar field in (13).

It turns out that the above situation is not transient one
but an attractor. Suppose that �A is initially negligible,
Ri � 10�2. In the first slow-roll inflationary phase (9),

the relation e��2�2 / e4� holds as was shown in (10).

Hence, the ratio R varies as R / e4ðc�1Þ�. As we now
consider c > 1, �A increases rapidly during inflation and
eventually reaches R� 10�2. Whereas, when R exceeds
10�2, the inflaton climbs up the potential due to the effect
of the vector field in (13); hence �A will decrease rapidly
and go back to the value R� 10�2. Thus irrespective of
initial conditions, �A will track ��.

The above arguments tell us that the inflaton dynamics
after tracking is governed by the modified slow-roll equa-
tions

_� 2 ¼ �2

6
m2�2; (15)

3 _� _� ¼ �m2�þ c�2�p2
Ae

�c�2�2�4�: (16)

We refer to the phase governed by the above equations as
the second inflationary phase, compared to the first one
governed by the Eqs. (9). Using above equations, we can
deduce

�
d�

d�
¼ � 2

�2
þ 2cp2

A

m2
e�c�2�2�4�: (17)

This can be integrated as e�c�2�2�4� ¼ m2ðc�
1Þ=c2�2p2

A½1þDe�4ðc�1Þ���1, where D is a constant of
integration. This solution rapidly converges to

e�c�2�2�4� ¼ m2ðc� 1Þ
c2�2p2

A

: (18)

Thus, we found �A becomes constant during the second
inflationary phase. Substituting the result (18) into the
modified slow-roll equation (16), we obtain the equation
for the second inflationary phase

3 _� _� ¼ �m2

c
�: (19)

This indicates that _� in the second phase of inflation is
about 1=c times that in the first phase of inflation. In Fig. 1,

we can see the value of _� after the phase transition is about
a half of that in the first phase, which agrees with the
analytical estimate for c ¼ 2.
Now let us consider the anisotropy. In the second slow-

roll phase, Eq. (6) reads

3 _� _� ¼ �2p2
A

3
e�c�2�2�4�; (20)

where we have assumed � � c�2�2, €� � _� _� . Using
Eqs. (15) and (20), the anisotropy turns out to be deter-
mined by the ratio (14) as

�

H
¼ �2p2

Ae
�c�2�2�4�

9 _�2
¼ 2

3
RðtÞ: (21)

From Eq. (18), we can calculate the ratio

R ðtÞ ¼ c� 1

c2�2�2
: (22)

Using this relation, we can relate degrees of anisotropy to
the slow-roll parameter as follows. Combining Eqs. (4)
with (5), we obtain

€� ¼ ��2

2
_�2 � �2

3
e�c�2�2�4�p2

A; (23)
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FIG. 2 (color online). Evolutions of the anisotropy �=H for
various c are shown. One can see the attractorlike behavior of the
anisotropy.
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where we have used _�2 � �2 _�2 derived from Eqs. (15),
(19), (21), and (22). Thus, the slow-roll parameter is given
by

� � � €�

_�2
¼ 2

c�2�2
; (24)

where we used the results (15), (18), and (19). Thus,
combining Eqs. (21), (22), and (24), we reach a main result

�

H
¼ 1

3

c� 1

c
�: (25)

This remarkable relation shows a quite good agreement
with the numerical results in Fig. 2.

Generality.—Although the discussion we have made so
far is restricted to a specific form of potential V, we now
argue that our finding is the general feature of the infla-
tionary scenario in the presence of the vector field.

Let us consider the general potential Vð�Þ for the in-
flaton. Then, the coupling function should be of the form
(11). Hence, in the slow-roll phase, the equation for the
inflaton (7) becomes

3 _� _� ¼ �V 0 þ 2c�2 V

V0 f
�2p2

Ae
�4��4�: (26)

When c > 1, the energy density of the vector will soon
catch up with that of the inflaton. At the tracking point, �A

and �� tend to be �A ’ ðV0=VÞ2��=4c�
2. Note that the

slow-roll parameter now becomes

� � � €�

_�2
’ 1

2c�2

�
V 0

V

�
2
: (27)

Then, again, we can conclude that the anisotropy becomes
of the order of the slow-roll parameter:

�

H
’ 1

6c�2

�
V 0

V

�
2 ’ 1

3
�: (28)

Thus, we have shown that the anisotropy is universally
determined by the slow-roll parameter. This is reminiscent
of non-Gaussianity in single inflaton models [12].

Conclusion.—We have proposed an inflationary sce-
nario with anisotropy. Remarkably, we have found that
degrees of anisotropy are universally determined by the
slow-roll parameter of inflation. Since the slow-roll pa-
rameter is observationally known to be of the order of a
percent, the anisotropy during inflation cannot be entirely
negligible. Indeed, we can expect rich phenomenology as
consequences of the anisotropy during inflation. First of
all, since the rotational invariance is violated, the statistical
anisotropy of CMB temperature fluctuations can be ex-
pected [13]. More interestingly, tensor perturbations could
be induced from curvature perturbations through the an-
isotropy of the background spacetime. One immediate
consequence is a correlation between curvature and tensor
perturbations [6]. This correlation should be detected
through the analysis of temperature-B-mode correlation

in CMB. Moreover, because of the anisotropy, there might
be linear polarization in primordial gravitational waves.
This polarization can be detected either through CMB
observations or direct interferometer observations. These
predictions can be checked by future observations.
Theoretically, we need more systematic checks such as
quantum loop effects [14].
Finally, let us point out another view of our result. Our

finding of hairy inflation can be regarded as a counter-
example to the cosmic no-hair conjecture. This hair stems
from the fact that the inflation is not exactly de Sitter
expansion. In fact, degrees of anisotropy are determined
by the slow-roll parameter. In a sense, this is the origin of
the universality of a percent level of vector hair.
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