PRL 102, 190504 (2009)

PHYSICAL REVIEW LETTERS

week ending
15 MAY 2009

Assessing Quantum Dimensionality from Observable Dynamics

Michael M. Wolf' and David Perez-Garcia®

"Niels Bohr Institute, 2100 Copenhagen, Denmark, Universitad Complutense de Madrid, 28040 Madrid, Spain
“Departamento Andlisis Matemdtico, Universitad Complutense de Madrid, 28040 Madrid, Spain
(Received 18 February 2009; published 15 May 2009)

Using tools from classical signal processing, we show how to determine the dimensionality of a
quantum system as well as the effective size of the environment’s memory from observable dynamics in a
model-independent way. We discuss the dependence on the number of conserved quantities, the relation to
ergodicity and prove a converse showing that a Hilbert space of dimension D + 2 is sufficient to describe
every bounded sequence of measurements originating from any D-dimensional linear equations of
motion. This is in sharp contrast to classical stochastic processes which are subject to more severe
restrictions: a simple spectral analysis shows that the gap between the required dimensionality of a
quantum and a classical description of an observed evolution can be arbitrary large.
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In Quantum Information Science, the dimension of the
accessible Hilbert space has the character of a resource—
larger dimensions mean potentially more powerful proto-
cols. Various implementations deal with huge Hilbert
spaces corresponding to ensembles of atoms [1] or mole-
cules [2], or continuous degrees of freedom leading to an
infinite dimensional space in the first place. But how many
degrees of freedom are effectively used? Can we assess
the dimension of the underlying system from observable
data without assuming a detailed model description
beforehand? These questions, partially motivated by the
need of questioning and pinpointing the assumptions of
security proofs in quantum key distribution [3], were re-
cently addressed in the context of ‘“nonlocal” quantum
correlations.

In [4], it was shown that a tripartite system can only
yield violations of certain Bell inequalities of the order of
Jd if each subsystem has dimension at least d, and in [5,6],
the dimension dependence of correlations has been inves-
tigated in detail for bipartite systems. As these approaches
are based on static correlations between several parts, the
question has been raised [5] whether and how the dimen-
sion of a single system can be determined.

Similarly, one might want to have a preferably model-
independent way of assessing the effective dimension-
ality of the systems environment (quantifying non-
Markovianity [7]) or the number of preserved, ‘‘noiseless”
degrees of freedom.

The present work addresses these questions from a
dynamical point of view. Given a discrete time evolution
of an expectation value, we ask what can be inferred about
the effective dimension of the systems Hilbert space or the
environments memory. We thereby focus on using as little
a priori information as possible. When addressing the
systems dimensionality, the only assumptions are that the
evolution is homogenous in time and Markovian in the
sense that it is performed on time scales large compared to
the relevant relaxation times of the systems environment. If
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the latter is not fulfilled, we will see the environmental
memory degrees of freedom in our dimension count.

For this analysis, two standard tools from classical sig-
nal processing [8] can be employed: delayed embeddings
and analysis in the frequency domain. These will allow us
not only to tackle the above question but also to address the
converse: which Hilbert space dimension is sufficient to
describe a given sequence of measurements and to com-
pare the efficiencies of quantum versus classical descrip-
tions of a given evolution? While every sequence produced
by quantum mechanical evolution can in principle be
described by a classical stochastic process, we will easily
see that quantum mechanics can be arbitrarily more
efficient.

Preliminaries.—Our interest lies in the discrete time
evolution of expectation values of the form

(A(1)) = ulAT'(p)], )

where p is a density matrix acting on a d-dimensional
Hilbert space, T is a quantum channel, i.e., a trace-
preserving completely positive linear map with equal input
and output space and A = AT an observable. For simplic-
ity, we will in the first part assume that (1) is a half-infinite
sequence, i.e., t € Ny = {0, 1, ...}; the extension to finite
sequences and noisy data will then be discussed at the end.

Note that the description in (1) assumes homogeneity in
time and Markovness in the sense that future evolution
only depends on the state at present and not on its history.
This means that given the left-hand side of (1) the Hilbert
space underlying the description of the right-hand side has
to contain all effectively relevant degrees of freedom.
Hence, if a system of dimension dg undergoes a non-
Markovian evolution due to dp memory degrees of free-
dom in the environment, then d = dg + dp.

It will sometimes be advantageous to consider p and A
as elements of a d>-dimensional vector space JH equipped
with the Hilbert-Schmidt scalar product (A|p) := t[ATp].
As a linear map, T has a matrix representation on JH which
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we will denote by 7. Using matrix units as a basis of F{,
we can write T = ¥, K, ® K, where {K,} is a set of Kraus
operators of T(p) = ZkKka,:r. While T refers to time
evolution in the Schrodinger picture, we will denote by
T* the respective map in the Heisenberg picture so that
t[AT(p)] = u[T*(A)p].

We will denote by

C :={H = H'|(H(r))independent of r € N,} (2)

the space of conserved quantities which obviously includes
all H = T*(H) and in particular 1 € C as the evolution is
trace preserving. Note that C depends on T and p.

A quantum channel 7" will be called ergodic with respect
to (w.r.t.) a state p (an observable A) if the orbit generated
by T* (T*") spans the entire space of d X d matrices.

Assessing the Dimension.—The central tool in this sec-
tion is the space 'V spanned by all delayed vectors

v, = [(A(7), (A(7 + 1)),...], 7€ Ny, 3)

The employed approach, often called method of delays, is
particularly widespread in the analysis of chaotic dynamics
[9] and it provides the following simple and tight relation:

Proposition 1 (A bound on the dimensionality).—
Consider the space V = span{v,},e, spanned by the de-
layed vectors obtained from a sequence of the form (1).
Then,

dimC + dimV = 4% + 1, 4

where d is the dimension of the underlying Hilbert space
and dimC the number of linearly independent conserved
quantities. Equality holds in (4) if T is ergodic w.r.t. A and
dimV = d? if it is ergodic w.r.t. A and p.
Proof.—Consider a basis {H,}, i = 1, ..., D := dimC of
the space C of conserved quantities. Then, {H; — ti[pH;]1}
span a D — 1 dimensional subspace of J{ which is or-
thogonal to the space spanned by 7| p), ¢t € N,. Hence, the
latter space, denote it by ), has dimension d> — D + 1 and

(A1) = <A5§)|T§§, |p5§>, &)

where the index $ refers to the restriction onto . Since
the minimal polynomial [10] of Ty has degree at most
dim$, there are complex coefficients c; such that

Adim ~]
j=

Recalling that (v,); = (A(7 + k — 1)), this implies that
there are at most dim$ linearly independent vectors in

V since

d>-D
(Wp—prdi = Z cjWyrk-1 VxkeN.  (7)

j=0

Let us now assume that 7 is ergodic w.r.t. A, which
means that {(A|T"},en, spans H . Suppose that (4) would

not be an equality. Then Z;’Z:BD cjv; = 0 for some ¢ which

implies, by ergodicity, that Z;’:)D ¢;T7*"|p)y = 0 for all
n € N. Therefore, dim$ = d*> — D so that for the or-
thogonal complement dim$* = D. However, this con-
tradicts the inequality dim$® = D — 1 which comes
from the fact that every element in $* is in C and in
addition 1 € C\ . So, ergodicity w.r.t. A implies equal-
ity in (4).

If T is in addition ergodic w.r.t. p, then = FH implies
D =1 so that indeed dimV = d2. We finally prove the
converse again by contradiction: assume linear dependence
of the form Z}iig' cjv; = 0. Then for all a, b € N, we
have (A|T%(3 i /-fj )T?|p) = 0 so that, due to ergodicity, T
would have a minimal polynomial of degree less than d>.
However, this would again imply the existence of a proper
subspace § contradicting the assumption dim V' = 42. To
see this, recall that a minimal polynomial of smaller degree
requires an eigenvalue A with geometric multiplicity larger
than one [10]. Denoting by |¢) a linear combination of the
corresponding left eigenvectors, we get (¢|T7|p) =
A {¢|p) such that there is always a ¢ L . O

Some remarks.—Depending on the assumptions, we may
use the above result for different purposes: (i) assuming
Markovianity, it provides a lower bound for d,
(i1) assuming we know d in addition, it yields an upper
bound on dimC, and (iii) if we only know the dimension of
the system dg = d — dg, it gives a lower bound on the
number dj of effective memory degrees of freedom in the
environment. In fact, if (A(z)) exhibits algebraic decay,
then, as one would expect, Eq. (4) leads to d = oo.

Proposition 1 is easily generalized to the case where,
instead of a single expectation value, we observe a set of
observables {A,} or, equivalently, take higher moments of
the observable into account (i.e., A, = A%). Then, the
delayed vectors have to be replaced by ‘‘delayed matrices™
so that (A, (7)) are the entries of the first column of a matrix
v,. Equation (4) is then obtained in just the same way
where dimV is now the number of linearly independent
matrices.

Quantum evolution for given sequences.—The previous
section provided a lower bound on the dimension of the
Hilbert space in terms of the dimension of the space V of
delayed vectors which are in turn solely based on (A(?)).
Now we will prove a converse to the above observation
showing that there always exists a quantum representation
in a Hilbert space of dimension not much larger than
dimV. Remarkably, such a converse does not exist for
classical evolutions (see subsequent discussion).

Proposition 2 (Quantum representation).—Given any
bounded sequence (A(?)) € R, t € N, there is always a
quantum state p, a quantum channel 7, and a Hermitian
observable A acting on a Hilbert space of dimension
dimV + 2 such that (1) holds.

Proof.—We begin with the fact there is always a con-
tractive matrix M and vectors R, L of dimension dim V
such that (A(z)) = (L|M'|R) (cf. [11]). We will proceed in
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two steps: first establish complete positivity by adding one
degree of freedom and then impose the trace-preserving
property by adding another degree. Define a square
“Kraus-operator” C = 1 @® M of dimension dim V + 1
and, referring to the same block structure (C & C%m V), a
vector |W) = [0 @ R) + |1 & 0) and an “‘observable” B =
(I1®0)0® L| + H.c.)/2. Then, using that (A(7)) € R, we
have (L|M'|R) = t{ BC'|¥){¥|C1"]. In order to make this
trace preserving, we embed it again, now referring to the
block structure C & CH™V*! With K := 0@ C,A:= (0@
B)||W]]?, p := (0 ® |¥)XW¥|)/||¥]|> we obtain that

T(p) = KpKt + [1@0X1 @ 0lu[(1 — KTK)p] (8)

indeed satisfies (1) for the chosen p and A, and since
IM|l, =1 implies KTK =1, T is a valid quantum
channel. Ul

Spectral analysis and separation from classical descrip-
tions.—So far we investigated the dimensionality of the
system based on the sequence (A(z)). The information
obtained can be refined when going to the frequency
domain by considering the function L: C— C (the
“z transform™ [8]) defined by the series

L=ty A ©)

t
= No z

This converges outside the unit circle and can be defined
inside by analytic continuation. In this way, we obtain for a
sequence of the form (1)

L (2) = ufA(zid — )" (p)], (10)

so that poles of L correspond to eigenvalues of 7. Note that
the latter lie always inside (or on) the unit circle, there is an
eigenvalue 1, and complex eigenvalues come in conjugate
pairs. While there are restrictions [12], for instance, for the
determinant, i.e., the product of eigenvalues, quantum
mechanics does not impose any further constraint on the
location of eigenvalues: any point on the unit disc is
possible even for d = 2. The simplest example for this is
a damped Rabi oscillation leading to (A(r)) = e~ 7' coswt
with poles of L at e='®77.

It is instructive to compare this with a potential classical
description of the sequence (A(7)). So assume there are d,.
states to each of which we assign an initial probability p,,
k=1,...,d,. In a classical model, the evolution of these
probabilities for a single timestep is governed by a stochas-
tic matrix S, and in the end, a measurement outcome a; €
R is assigned to the k’th state. In this way, we arrive at

(A(1)) = (alS'| p)- 11

Yet, the poles of L correspond to eigenvalues of S,
which share the basic properties mentioned above. How-
ever, the classical description imposes additional con-
straints on the location of the eigenvalues depending on
the dimension d,.. In particular, they have to be located
inside the convex hull of all roots of unity up to order d..

That is, the unit disc will not be entirely covered for any
finite d,.. A more complete characterization of the location
of eigenvalues is given in [13,14] and shown in Fig. 1 for
d. =234

A simple consequence of this analysis is that in terms of
the required degrees of freedom, a quantum mechanical
description of a sequence (A(f)) can be far more efficient
than a classical one (to the point of d = 2 vs d,. = o). In
the above discussion, the separation between quantum and
classical comes from the simple fact that oscillations are
easier to describe in terms of probability amplitudes than
by using probabilities. Certainly, more sophisticated sepa-
rations can be found; however, a complete determination of
d and d. from a given sequence (A(f)) seems to be a
daunting task (despite considerable results on the classical
side cf. [15,16]).

Finite and noisy data.—So far, we addressed the ideal
case of a half-infinite and noiseless sequence—also noise-
less in the sense that the expectation values are known
precisely which requires infinite statistics. It is, however,
straightforward to analyze finite and noisy data along the
same lines. Let us begin with a finite sequence (A(?)), t =
2(N — 1) and consider the N X N matrix V,; := (A(k +
[ — 2)). As the rows of V are a truncation of the vectors v,
7=0,...,N — 1, we have

dimV = rankV, (12)

\
o050

0.5

FIG. 1. (a) Eigenvalues of the evolution operator lie on the unit
disc and can be obtained from the observable time dependence of
any expectation value. For a classical description, they have to be
located in a region depending on the number d. of degrees of
freedom. For d, = 2, this is the real line, for d. = 3, 4, the dark
and light grey regions become additionally accessible. (b) A
simple damped oscillation leads to eigenvalues e~ Y= implying
that a quantum mechanical description can access the entire unit
disc even for d = 2.
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FIG. 2. Top: a finite sequence (A(r)), t = 100 obtained from a
randomly chosen unitary dynamics of a spin-1 quantum system
(d = 3). As there are three conserved quantities (the eigenstates
of the evolution), we have dimV = 7. Bottom: log-plot of the
15 largest singular values s; of the corresponding 50 X 50 matrix
V as a function of the standard deviation of added Gaussian noise
(1%-10% of the signal). While for small noise the largest 7
singular values are clearly separated by a threshold, this washes
out as the error increases—for too much noise the data could as
well be explained by smaller dim "V as expressed quantitatively
by Eq. (13).

with equality if N = dim V. If the data are noisy or suffer-
ing a significant statistical error, then V will typically be of
full rank. However, if an error estimate is available, we
may consider an effective rank of V by disregarding all
singular values below a certain noise threshold which is set
by the estimated amount of errors. More precisely, assume
that V is perturbed by some V. (i.e., we actually observe
V' =V +V,) where ||V_|| = €. Then, by application of
the singular value inequality [17], we get

rank V = min{k|s;., (V') = €}, (13)

where s;(V') is the I’th largest singular value of V’.

In Fig. 2, the behavior of these singular values is de-
picted graphically for an example of a unitary evolution
tr{AU' pU'"] with d = 3 and randomly chosen p, A, U. As
U preserves its eigenstates and has (due to the random
choice) no other conserved quantities, we have dimV = 7
which is well reflected in the singular values of V for small
enough errors. In fact, in such unitary examples, the di-
mension estimates appear to be surprisingly stable up to
errors which make up a considerable fraction of the signal.

For the spectral analysis, finite and noisy data seem to be
more involved to handle. See [11] for a brief discussion.

Discussion.—In this Letter, we have discussed how to
determine the Hilbert space dimension needed to explain
observed data of an evolving quantum system. This intro-

duces a new paradigm, beyond Bell inequalities and the
analysis of correlations, to obtain such estimates with
minimal assumptions in the model, in our case homoge-
neity and Markovianity. In particular, the method can be
used for single systems, which answers a question posed in
[5] (for a different static approach, based on several input
states, see the recent work [18]). We have also seen that we
can use the method to quantify the non-Markovianity of an
evolution via the effective dimension of the environments
memory—complementing the static approach of [7].
Finally, the analysis of spectral information revealed a
dramatic difference between the dimensions needed to
give a quantum resp. classical explanation of the data.
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