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The stochastic dynamics of colloidal particles with surface activity—in the form of catalytic reaction or

particle release—and self-phoretic effects are studied analytically. Three different time scales correspond-

ing to inertial effects, solute redistribution, and rotational diffusion are identified and shown to lead to a

plethora of different regimes involving inertial, propulsive, anomalous, and diffusive behaviors. For

symmetric active colloids, a regime is found where the mean-squared displacement has a superdiffusive

t3=2 behavior. At the longest time scales, an effective diffusion coefficient is found which has a

nonmonotonic dependence on the size of the colloid.
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The development of biomimetic technology would sig-
nificantly benefit from the ability to make synthetic com-
ponents with desired motility properties. In recent years,
there has been a range of developments along these lines,
with functionalities that can be manipulated at length
scales ranging from microns down to molecular scales
[1]. These include experimental realization of actuated
microswimmers [2] and theoretical proposals of simple
model swimmers that can tackle the problems caused by
low Reynolds number conditions [3]. Moreover, it has been
recently demonstrated (both experimentally and theoreti-
cally) that interfacial phoretic effects (such as electropho-
resis, electro-osmosis, and diffusiophoresis) could lead to
self-propulsion of colloidal particles [4–6]. It has also been
shown that phoretic effects can be used to steer both active
and passive colloidal particles [7,8], which adds to the
promise of these phenomena for designing functional
self-motile vessels in the nanoscale.

A fundamental property of such small objects, even
when equipped with a self-propulsion mechanism, is that
their motion is stochastic due to the ambient fluctuations
that could be of thermal origin or otherwise. This means
that we cannot directly control the motion of self-motile
objects, and any design characteristic needs to be incorpo-
rated into statistical average outcomes. For example, it has
been shown that a self-propelled colloidal particle makes a
crossover between ballistic and diffusive behaviors over a
time scale that is set by the rotational diffusion of the
colloid, when its orientation will be randomized [5]. A
study of a two-dimensional model of self-propelled objects
with fluctuations both in direction and magnitude of the
velocity has shown the possibility of reentrant ballistic and
diffusive behaviors [9]. Other examples include the effect
of the activity of proteins on the dynamics of membranes
[10], and collective behavior of mixtures of motors and
filaments (or reorganizing living cells) and active particles
such as swimming bacteria [11,12], where a host of quali-
tative and quantitative changes have been found to occur
due to nonequilibrium fluctuations. In light of this inherent

feature, it will be natural to ask how many distinct regimes
of motion we could have for active colloidal particles, what
the relevant time scales that differentiate between these
regimes are, and how they can be tuned so that the desired
type of motion could be achieved by choosing the right
parameters.
Here, we aim to address some of these questions for a

class of isolated self-motile active colloids. We study the
velocity autocorrelation function and the mean-squared
displacement of surface-active spherical colloidal particles
that interact with their self-generated surrounding clouds
of solute particles via interfacial phoretic effects. We iden-
tify the relevant time scales in the dynamics, namely, the
hydrodynamic relaxation time �h that controls the cross-
over between inertial and viscous regimes, the diffusion
time of the solute particles around the colloid �d, and the
rotational diffusion time of the colloid �r. We calculate the
contribution due to hydrodynamic fluctuations, as well as
the self-phoretic contributions that depend on whether the
particles are symmetric (in which case there is no net
propulsion) or asymmetric (where the colloids are self-
propelled). We find that these different contributions lead
to a variety of different regimes, as summarized in Fig. 1.

FIG. 1 (color online). Summary of results for the different
contributions to the mean-squared displacement of active col-
loids. The total mean-squared displacement is obtained by sum-
ming all of the contributions for asymmetric colloids, and the
bottom two rows (only) for symmetric colloids.
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For symmetric surface activity, we find a regime corre-
sponding to �h � t � �d, where the active colloid dem-
onstrates a superdiffusive behavior with a mean-squared

displacement �t3=2 (shaded region in Fig. 1). This is simi-
lar and somewhat related to an anomalous superdiffusive
regime found in active bacterial suspensions [12]. Other
regimes include inertial t2 or propulsive t2 behaviors, dif-
fusive behavior �t, and an anomalous correction of the

form ��t3=2.
We consider a spherical colloidal particle of radius R

with an axially symmetric pattern of surface activity as
shown in Fig. 2(a), which in essence leads to the release of
(excess) product particles P with diffusion coefficient D.
This could correspond to a chemical reaction S ! S0 þ P
catalyzed on the surface of the colloid, with the simplifying
assumption that the produced S0 will act almost like the
consumed S [see Fig. 2(b)]. On the other hand, it could also
correspond to a system that actively releases P particles
from the interior of the sphere. The product particles
will have a concentration profile Cðr; tÞ that could inter-
act with the fluid in the vicinity of the colloid due to sur-
face phoretic effects, and cause relative motion with a
slip velocity vsð�;�; tÞ ¼ �rkCðR; �;�; tÞ [in standard

spherical coordinates; see Fig. 2(a)], where� is the surface
mobility and rk denote the lateral gradient [13]. In dif-

fusiophoresis, � ¼ kBT�
2=�, where kBT is the thermal

energy scale, � is the viscosity of water, and � is the
Derjaguin length [14], which is defined in terms of the
interaction potential WðzÞ between the diffusing particles

and the surface of the colloid as �2 ¼ R1
0 dzz½1�

e�WðzÞ=kBT�. Note that, in our notation, �2 will be positive
(negative) for repulsive (attractive) effective surface poten-
tials. In the case of ionic systems �will be set by the Debye
length [8,13]. Averaging over the surface of the sphere
(using integration over the solid angle �), we can obtain

the instantaneous velocity of the colloid as vðtÞ ¼ � 1
4� �R

d��rkCðR; �;�; tÞ.
The axis of symmetry of the colloid, which points to the

direction of propulsion for sufficiently asymmetric patterns
[6], is defined by the unit vector nðtÞ ¼ ð sin�nðtÞ�
cos�nðtÞ; sin�nðtÞ sin�nðtÞ; cos�nðtÞÞ [see 2(a)]. The sto-
chastic nature of nðtÞ due to rotational diffusion of the
colloid causes the cloud of product particles to constantly
redistribute, which will in turn make the velocity of the
active colloid fluctuate. To get the instantaneous velocity
of the colloid, we need to solve the diffusion equation for
the concentration profile of the product particles, namely,

@tCðr; tÞ �Dr2Cðr; tÞ ¼ 	ð�;�; tÞ
ðr� RÞ; (1)

subject to the boundary condition of vanishing normal
current on the surface of the sphere. In Eq. (1), 	ð�;�; tÞ
is the surface activity function of the sphere, i.e., rate per
unit area of the introduction of (excess) product particles.
For axially symmetric surface activity, we can represent
the function in terms of the spherical harmonics as
	ð�;�; tÞ ¼ P

‘;mð 4�
2‘þ1Þ	‘Y

�
‘mð�nðtÞ; �nðtÞÞY‘mð�;�Þ.

Equation (1) only gives the average density, and the linear
relation between the velocity and the concentration profile
suggests that in order to calculate velocity correlations we
need to incorporate the density fluctuations as well, which
we do using the method outlined in Ref. [6].
Using the formulation described above we can calcu-

late the velocity autocorrelation function for the active
colloid AvvðtÞ � hvðtÞ � vð0Þi as well as the mean-
squared displacement �L2ðtÞ � h½rðtÞ � rð0Þ�2i ¼R
t
0 dt1

R
t
0 dt2hvðt1Þ � vðt2Þi. There are three important time

scales in the problem. The characteristic diffusion time of
the product particles around the sphere is �d ¼ R2=D,
where D ¼ kBT=ð6��aÞ depends on the radius of the
solute particles a. This time scale sets the relaxation time
of the redistribution of the particles around the sphere
when it changes orientation. The rotational diffusion
time, �r ¼ 4��R3=kBT, controls the changes in the ori-
entation of the sphere, and is defined via the orienta-

tion autocorrelation function: hnðtÞ � nð0Þi ¼ e�t=�r [15].
Finally, the hydrodynamic time that controls the crossover
between the inertial and the viscous regimes is given as
�h ¼ R2=�, where � ¼ �=� is the kinematic viscosity of
water that involves the mass density �. Practically speak-
ing, we always have �h � �d � �r, although this is not a
fundamental requirement.
We can identify three distinct contributions to the ve-

locity autocorrelation function: (1) a contribution from the
density fluctuations, which turns out to be only sensitive to
the overall symmetric component of the activity and is
present even for nonpropelled active colloids, (2) a con-
tribution from the asymmetric component of the activity,
and (3) a hydrodynamic contribution that entails the pas-
sive diffusion of the colloid and the hydrodynamic long-
time tail. These will lead to distinct contributions to the
mean-squared displacement, which will add up to make the

FIG. 2 (color online). (a) Schematics of an instantaneous con-
figuration of an axially symmetric surface-active spherical col-
loid. (b) The model could correspond to a chemical reaction
catalyzed on the surface with the simplifying assumption that
one of the product particles is very similar to the substrate, or a
container that releases particles through channels.
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total mean-squared displacement, namely, �L2ðtÞ ¼
�L2

symðtÞ þ �L2
asymðtÞ þ �L2

hydðtÞ. We will focus on each

of these contributions separately below.
Symmetric contribution.—The density fluctuations that

are accounted for by adding a noise term to Eq. (1) lead to a
contribution to the velocity autocorrelation function that is
proportional to 	0 [16]—the ‘ ¼ 0 coefficient in the ex-
pression for 	ð�;�; tÞ in terms of the spherical harmonics
[	0 ¼ 1

4�

R
d�	ð�;�; tÞ]. This means that the contribu-

tion by density fluctuations is only sensitive to the mean
overall surface activity of the colloid, and not the pattern-
ing structures on it. We find the asymptotic behaviors

Avv
sym ’ ð	0�

2=�3=2DR4Þðt=�dÞ�1=2 for t � �d and A
vv
sym ’

ð3	0�
2=32�3=2DR4Þðt=�dÞ�5=2 for t 	 �d. We also cal-

culate the contribution of density fluctuations to the mean-
squared displacement, which has the asymptotic behaviors
of

�L2
sym ’ 8	0�

2

3�3=2D3=2R3
t3=2; t � �d; (2)

at short times, and

�L2
sym ’ 2c1	0�

2

�2D2R2
t; t 	 �d; (3)

at long times, and a smooth crossover between them. Here,
c1 ¼ 1:178 10 is a numerical prefactor.

Asymmetric contribution.—Solving Eq. (1) without the
noise term, we can calculate the propulsion velocity of the
colloid as a function of time for a given time-dependent
orientation trajectory. We find vðtÞ ¼ v0

�d

R
t
�1 dt0Mðt�

t0Þnðt0Þ, where v0 ¼ �	1�=ð3DÞ is the mean propulsion

velocity [6], and the memory kernel is given as MðtÞ ¼
2
�

R1
0 du u3=2

ðu2þ4Þ e
�uðt=�dÞ, with asymptotic behaviorsMðtÞ ’

2ffiffiffi
�

p ðt=�dÞ�1=2 for t � �d and MðtÞ ’ 3
8
ffiffiffi
�

p ðt=�dÞ�5=2 for

t 	 �d. Note that the propulsion velocity is controlled by
the ‘ ¼ 1 term (	1) in the surface activity profile.

Rotational diffusion of the colloid randomizes its orien-
tation over the time scale �r, which leads to a contribution
to the velocity autocorrelation function of the form of a
convolution between two memory kernels and the orienta-
tion autocorrelation function. This leads to a velocity
autocorrelation function [16], which has three different
regimes, due to the presence of two characteristic time
scales �d and �r. At short times, t � �d � �r, we find

Avv
asym ’ v2

0½1� 4c2
�

�d
�r
� 1

2

�3=2
d

�5=2r

tþ 4
�

t2

�d�r
lnð t

�d
Þ� where c2 ¼

0:642 699 is a numerical prefactor, which implies that the
autocorrelation function will be rounded off at small t. For
intermediate time, �d � t � �r, we find Avv

asym ’ v2
0½1�

t
�r
� 1ffiffiffi

�
p �3=2

d

�r
t�1=2�, and for long times, �d � �r � t, we

find Avv
asym ’ v2

0½e�t=�r þ 3
4
ffiffiffi
�

p �r�
3=2
d t�5=2�, which means

that the decay at long times is primarily algebraic and
not exponential. Consequently, the mean-squared displace-
ment will have three different regimes. We find the asymp-

totic form of

�L2
asym ’ v2

0t
2

�
1� 4c2

�

�
�d
�r

��
; t � �d � �r; (4)

at short times,

�L2
asym ’ v2

0t
2 �

�
8

3
ffiffiffiffi
�

p
�
v2
0�

3=2
d

�r
t3=2; �d � t � �r;

(5)

at intermediate times, and

�L2
asym ’ 2v2

0�rt; �d � �r � t; (6)

at long times, with a smooth crossover between them.
Hydrodynamic contribution.—Thermal fluctuations of

the solvent fluid velocity also contribute to the velocity
autocorrelation function of the sphere, because of the no-
slip boundary condition between the fluid and the colloid.

Performing a similar calculation, one finds [17] �L2
hyd ’

6D0t� 2kBT�
1=2

�3=2�3=2 t
1=2 for t 	 �h, where D0 ¼ kBT=ð6��RÞ

is the bare diffusion coefficient of the colloid. The first
term in the above equation describes the standard passive
diffusion of the sphere while the second term corresponds
to the hydrodynamic long-time tail [18,19]. At short times

when t � �h, one finds�L
2
hyd ’ 3ðkBTMeff

Þt2, whereMeff is the

effective inertial mass of the colloid in water. The above
results are summarized in Fig. 1.
Discussion.—At the longest time scales (t > �r), all of

the contributions are diffusive, leading to a total effective
diffusion coefficient

Deff ¼ kBT

6��R
þ 4�	2

1�
2�R3

27D2kBT
þ c1	0�

2

3�2D2R2
: (7)

The different terms in the above expression exhibit differ-
ent R dependencies, which causes the asymmetric contri-

bution to be dominant for R * ½DkBT=ð	1��Þ�1=2, while
the symmetric contribution takes over when R &
	0�

2�2=ðD2kBTÞ. At the shortest time scales, on the other
hand, the contribution due to phoretic effects will also be
dominated by inertial effects that should lead to ballistic
contributions (see Fig. 1).
In the intermediate times, we observe a number of

anomalous behaviors. For symmetric active colloids, the

superdiffusive t3=2 behavior [Eq. (2)] for �h < t < �d is a
new regime (for isolated self-propelled particles) where the
motion is neither ballistic nor diffusive. The reason a
symmetric particle can move at all is because density
fluctuations of the cloud of solute particles can instanta-
neously produce an asymmetric distribution and therefore
a net propulsion in some direction. This motion, however,
will be decorrelated via density fluctuations themselves,
leading to fluctuations without symmetry breaking. We can
understand the form of Eq. (2) as follows: using �L2 �
v2t2, and putting v��rC��
C=R, we find �L2 �
�2h
CðtÞ
Cð0Þit2=R2. The density autocorrelation func-
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tion can be written as h
CðtÞ
Cð0Þi ¼ h
C2ikðtÞ, involving
the density fluctuations h
C2i and the kernel kðtÞ that
controls the relevant relaxation mode [20]. Here, relaxation

is controlled by diffusion, hence kðtÞ � 1=ðDtÞ3=2, and the
number fluctuations are controlled by the average number
of particles (h
N2i � Nav)—as inherent to any Poisson
process—that yield h
C2i � Cav. On the other hand, the
average density is controlled by the average particle pro-
duction rate (per unit area) 	0 as Cav � ð	0R

2tÞ=R3.
Putting these all together, we find Eq. (2). This shows
that the active velocity fluctuations are controlled by two
mechanisms: particle production (that controls the density
fluctuations) and diffusion of the produced particles.

Interestingly, a similar t3=2 power law has been observed
in the motion of passive tracer particles in a bath of bac-
teria whose flagella stir up the fluid (and theoretically
accounted for using a phenomenological continuum active
medium theory) [12], and in ion channel gating [21], both
of which cases are also governed by some sort of density
fluctuations [22].

For asymmetric particles when �h < t < �d, the t3=2

contribution is added (with a positive coefficient) to the
t2 propulsive term. On the other hand, for �d < t < �r the
memory effect that exists for self-propelled asymmetric
colloids introduces an anomalous anticorrelation (i.e.,
contribution with negative sign) in the velocity autocorre-
lation function and the mean-squared displacement
[Eq. (5)]. Such anomalous corrections, which have also
been observed in continuum theories of interacting active
self-propelled particles [11], are reminiscent of the effect
of the hydrodynamic long-time tail. Note, however, that the

anomalous ��t3=2 correction in Eq. (5) corresponds to
much longer time scales and should be more easily ob-
servable than the hydrodynamic long-time tail.

To get a better feel for the working domain of each
regime, we can write the time scales (for water at room

temperature and using a typical value of a ¼ 1 �A) in the
following convenient form: �h ¼ 10�6ðR=1 �mÞ2 s, �d ¼
10�3ðR=1 �mÞ2 s, and �r ¼ 3ðR=1 �mÞ3 s. This shows
that while rapid cameras or scattering techniques [12,19]
could in principle resolve all the three domains for micron-
sized beads, using R ¼ 20 �m (which yields �d ¼ 0:4 s
and �r ¼ 2:4� 104 s) should provide a comfortable work-
ing range for an experiment that aims to resolve the
anomalous components of the motion. Finally, we note
that here we have only focused on the phoretic contribu-
tions to velocity fluctuations, and in practice other sources
of fluctuations might also be present [10], which need to be
taken into account.

In summary, we have shown that active colloidal parti-
cles that interact with their self-generated cloud of solute
particles can have a range of different types of stochastic
motions. Using parameters such as surface activity, surface
mobility, and size, we can tune the behavior of active
colloidal particles, and this could provide new possibilities

in designing functional motile agents for applications in
micro- and nanofluidics and targeted delivery.
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