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Partial annihilation of two counterpropagating dissipative solitons, with only one pulse surviving the

collision, has been widely observed in different experimental contexts, over a large range of parameters,

from hydrodynamics to chemical reactions. However, a generic picture accounting for partial annihilation

is missing. Based on our results for coupled complex cubic-quintic Ginzburg-Landau equations as well as

for the FitzHugh-Nagumo equation we conjecture that noise induces partial annihilation of colliding

dissipative solitons in many systems.
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Solitonic behavior is a hallmark of nonlinear macro-
scopic systems almost free of dissipation, in fields such
as nonlinear optics, fluid dynamics and plasma physics [1].
More recently, solitontype behavior has also been observed
in strongly dissipative systems including chemical reac-
tions [2] and nonlinear optics [3] as well as prototype
equations [4–8]. In binary fluid convection [9,10], a
dispersive-dissipative system, collisions between counter-
propagating pulses lead to bound states of pulses for low
approach velocity, and to partial annihilation of pulses—
with only one pulse surviving the collision—for high ve-
locity. In a dissipative-excitable chemical system [2], apart
from solitonic behavior, collisions of pulses lead mostly to
partial annihilation. This has been modeled using a defect
zone in [11].

Interpenetration, annihilation, and bound states of pulses
could be accounted for in modeling to a very large extent
by using coupled complex cubic-quintic Ginzburg-Landau
(GL) [4–7,12,13] and order parameter (Swift-Hohenberg)
[8] equations as they arise as prototype equations in the
vicinity of a weakly inverted bifurcation to traveling
waves. In Ref. [5] it has been shown that such an outcome
can be obtained from deterministic coupled complex
cubic-quintic GL equations if one of the pulses prepared
as an initial condition has not reached its final state yet.
However, a generic picture accounting for the experimen-
tally observed partial annihilation of pulses, which are in
their asymptotic state before the interaction starts, is miss-
ing. It is the goal of the present Letter to present such a
framework in terms of two coupled cubic-quintic GL
equations with noise. In addition, we present results on
the stochastic version of a complementary prototype equa-
tion for excitable media as it arises frequently in chemical
reactions, nerve pulse propagation as well as for other
biological systems, the FitzHugh-Nagumo equation
[14,15]. Based on our results for these two vastly different
prototype equations we conjecture that partial annihilation
of pulses is a noise-induced effect.

We investigate two coupled complex subcritical cubic-
quintic Ginzburg-Landau equations for counterpropagat-

ing waves with noise:

@tA�v@xA¼�Aþð�r þ i�iÞjAj2Aþð�r þ i�iÞjAj4A
þðcr þ iciÞjBj2AþðDr þ iDiÞ@xxAþ��A;

(1)

@tBþv@xB¼�Bþð�r þ i�iÞjBj2Bþð�r þ i�iÞjBj4B
þðcr þ iciÞjAj2BþðDr þ iDiÞ@xxBþ��B;

(2)

where Aðx; tÞ and Bðx; tÞ are complex fields and where we
have discarded quintic cross-coupling terms for simplicity.
A and B are slowly varying envelopes and where the
stochastic forces �Aðx; tÞ and �Bðx; tÞ denote white noise
with the properties h�A;Bi ¼ 0, h�Aðx;tÞ�Aðx0; t0Þi¼
h�Bðx;tÞ�Bðx0; t0Þi¼ h�Aðx;tÞ�Bðx0;t0Þi¼0 and h�Aðx; tÞ�
��
Aðx0; t0Þi ¼ h�Bðx; tÞ��

Bðx0; t0Þi ¼ 2�ðx � x0Þ�ðt � t0Þ,
where ��

A denotes the complex conjugate of �A. The fast
spatial and temporal variations have already been split off
when writing down the coupled envelope equations. To
compare with measurable quantities such as, for example,
temperature variations in fluid dynamics, these rapid var-
iations must be taken into account [16–20].
We have carried out our numerical studies for the fol-

lowing values of the parameters, which we kept fixed for
the present purposes: � ¼ �0:112, �r ¼ 1, �i ¼ 0:2,
�r ¼ �1, �i ¼ 0:15, Dr ¼ 1, Di ¼ �0:1, and ci ¼ 0.
We note that these parameter values have also been used
in previous studies [7,12]. To get an overview where partial
annihilation can occur as a function of the parameter values
in the model under study, we have plotted in Fig. 1 the
phase diagram using the approach velocity, v, of the pulses
and the strength of the cubic cross-coupling of counter-
propagating waves, cr, as the axes. Here we focus on
stabilizing (negative) values of cr. The corresponding
phase diagram for positive values of cr revealing a rich
variety of outcomes of collisions including various types of
bound states of pulses and holes as well as counterpropa-
gating holes has been given elsewhere [7,12].
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Figure 1 has been obtained numerically with � ¼ 0.
Thus the simulation shown in the above mentioned figure
contains only the numerical error. We see immediately that
for this very small amount of noise—a quantitative analy-
sis of this statement is given below—partial annihilation
occurs at the boundaries between the different outcomes of
collisions: (a) stationary bound states—interpenetration,
(b) stationary bound states—annihilation, and (c) inter-
penetration—annihilation.

In Fig. 2 we show x-t plots of the four results obtained as
outcome of collisions along the diagonal of the phase
diagram presented in Fig. 1 for which all outcomes are
present. We note that there is, when averaged over many
runs, an equal number of pulses traveling to the left and to
the right for the case of partial annihilation.

To investigate the influence of noise on the parameter
range over which one can observe partial annihilation, we
have superposed on the deterministic coupled complex
cubic-quintic GL equations white noise of variable
strength �. The numerical integration of the pulse colli-
sions was performed using the Heun method [21] applied
to a spatially discretized version of the stochastic partial
differential equations (1) and (2). The applied noise
strength of additive noise has been varied over 6 orders
of magnitude and we found three different classes of
behavior. In Fig. 3 we have plotted one representative of
each class.

For an applied noise strength of � ¼ 10�7 we obtain the
result plotted in Fig. 3(a). A comparison with the data

obtained with those given in the diagonal of Fig. 1 shows
that there is no change for the range of the occurrence of
partial annihilation. We also note that the boundaries
between the different outcomes are sharp: there is al-
ways only one possible outcome of the interaction of

(a)
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(c)

(d)

FIG. 2 (color online). The figures show the results of collisions
as x-t plots, as the parameter cr, characterizing the strength of
the cross-coupling between counterpropagating waves, is varied.
The parameter values for cr ¼ v were: cr ¼ �0:21 [Fig. 2(a),
annihilation]; cr ¼ �0:18 [Fig. 2(b), interpenetration]; cr ¼
�0:165 [Fig. 2(c), partial annihilation]; and cr ¼ �0:15
[Fig. 2(d), bound state of two pulses]. The parameter values
used are given in the main text.
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FIG. 1 (color online). Phase diagram in the plane approach
velocity v versus strength of cubic cross-coupling of counter-
propagating waves, cr, for stabilizing (negative) values of cr.
Marked in green (grey solid squares) is the annihilation of two
pulses, a result, which dominates for strongly stabilizing cross-
coupling. Marked as black solid circles are bound states of
pulses and in pink (grey solid circles) the interpenetration of
two pulses. As open triangles we have depicted the outcome of
partial annihilation, for which either the right- or the left-
traveling pulse survives, but not the other. Note that partial
annihilation due to numerical error appears in the vicinity of
the boundary between two different results.
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pulses for fixed values of cr and v. As the noise strength is
increased, the behavior of the system changes qualitatively.
Figure 3(b) shows the result for a noise strength that is 2
orders of magnitude higher: that is, � ¼ 10�5. Two central
features emerge: (a) the range over which partial annihila-
tion is observed as an outcome of the collision between two
pulses increases by a factor of about two; and (b) for the
increased noise strength the outcome of collisions is no
longer unique. For fixed values of the parameters it can be
either partial or complete annihilation on the one hand, or
partial annihilation or complete interpenetration on the
other, with varying proportions as the parameters are
changed. We note that the boundary to bound states of
pulses, occurring at higher values of cr, remains fixed and
therefore the basin of attraction for partial annihilation is
not invading that of bound pulses.

As the applied noise strength is increased further, even
more dramatic changes in the results of collisions arise.
This is brought out in Fig. 3(c), for which we have in-
creased the noise strength by 3 orders of magnitude com-
pared to Fig. 3(b): � ¼ 10�2. First of all we see that the
basin of attraction for interpenetration has disappeared
completely. Even more remarkably the range over which
partial annihilation can occur increases by almost 2 orders
of magnitude (by a factor of �70). This means that the
basin of attraction of complete annihilation is shrinking

considerably over a large parameter range making room for
the expansion of the range over which partial annihilation
can occur. We also note that the proportions for which
partial or complete annihilation occur vary perfectly
smoothly. Finally, we mention that even for this fairly large
noise strength of � ¼ 10�2, the boundary in cr to bound
states remains essentially unchanged.
The intuitive picture that emerges is as follows.

Deterministically a stabilizing cross-coupling leads to a
reduction of the amplitude and the width of the pulses
during the interaction. If the reduction is smaller by a
certain amount than two critical values of amplitude and
width, the pulses grow back up to the shape and size before
the collision: interpenetration. If the reduction is larger
than to a certain limiting area, complete annihilation re-
sults [4]. In the presence of noise one of the two fields
might be reduced in amplitude and width to values below a
critical value while the other field stays above and grows
back up in amplitude and width to the value before the
collision: partial annihilation results as a consequence of
the noise-induced breaking of left-right symmetry.
In addition to the coupled stochastic complex cubic-

quintic GL equations we have investigated a stochastic
version of the FitzHugh-Nagumo equation, which is a
prototype equation to describe excitable media [14,15]
and thus of a qualitatively different nature compared to
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FIG. 3 (color online). The probabilities P�ðcr; PAÞ (solid triangles), P�ðcr; AÞ (solid squares) and P�ðcr; IÞ (solid circles) for partial
annihilation (PA), annihilation (A) and interpenetration (I) have been plotted as functions of cr, the strength of the stabilizing
interaction of counterpropagating waves, for three different values of the noise strength �: (a) � ¼ 10�7, (b) � ¼ 10�5, and
(c) � ¼ 10�2 for the case cr ¼ v. We note the large difference in the interval shown for cr demonstrating that increasing the noise
strength enhances drastically the parameter interval over which partial annihilation can be induced by noise.

100 300 500 700

-0.2

0.2

0.4

0.6

0.8

x

u

(a)

100 300 500 700

-0.2

0.2

0.4

0.6

0.8

u

x

(b)

FIG. 4. The process of partial annihilation for the stochastic FitzHugh-Nagumo equation: (a) before the interaction two excitable
waves approach each other, (b) partial annihilation after a transient: the parity symmetry is broken and only one excitable wave has
survived. Noise strength � ¼ 0:0095, a ¼ �0:044; other parameter values are given in Ref. [15].
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cubic-quintic complex GL equations. We find that for the
FitzHugh-Nagumo equation noise-induced partial annihi-
lation arises close to the border [15] separating interpene-
tration and complete annihilation of counterpropagating
excitable waves: Fig. 4.

In summary we have presented a noise-induced mecha-
nism for the occurrence of the partial annihilation of pulses
in the framework of a CGL model, a pattern-forming
system with dissipation and dispersion. We have demon-
strated that noise plays a crucial role for the range of
existence of partial annihilation (breaking the symmetry
A ! B and x ! �x) and thus can be used to control the
outcome of collisions. We conjecture that noise can induce
the partial annihilation of pulses. This conjecture has been
validated for a prototype equation of a very different type:
the FitzHugh-Nagumo equation. It will be most interesting
to see experimental tests of the predictions of the model
studied for nonequilibrium systems ranging from strongly
dissipative fluid convection [9,10] to pattern-forming
chemical reactions in their excitable or oscillatory regimes
[2,15,22]. For example, one can superpose noise in a
controlled way on the gas flux of the components in
chemical reactions on surfaces such as Ir(111) [23,24].
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