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We construct time-reversal invariant topological superconductors and superfluids in two and three

dimensions. These states have a full pairing gap in the bulk, gapless counterpropagating Majorana states at

the boundary, and a pair of Majorana zero modes associated with each vortex. The superfluid 3He B phase

provides a physical realization of the topological superfluidity, with experimentally measurable surface

states protected by the time-reversal symmetry. We show that the time-reversal symmetry naturally

emerges as a supersymmetry, which changes the parity of the fermion number associated with each time-

reversal invariant vortex and connects each vortex with its superpartner.
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The quantum Hall (QH) effect provides the first example
of a topologically nontrivial state of matter, where the
quantized Hall conductance is a topological invariant [1].
Analogously, chiral superconductors in a time-reversal
symmetry breaking (TRB) ðpx þ ipyÞ pairing state in 2d

have a sharp topological distinction between the strong and
weak pairing regimes [2]. In the weak pairing phase, the
system has a full bulk gap and gapless chiral Majorana
states at the edge, which are topologically protected. Chiral
superconductors are analogous to the QH state—they both
break time reversal (TR) and have chiral edge states.
However, the edge states of a chiral superconductor have
only half the degrees of freedom compared to the QH state,
since the negative energy quasiparticle operators describe
the same excitations as the positive energy ones. Moreover,
a Majorana zero mode is trapped in each vortex core [2],
which leads to a ground state degeneracy of 2n�1 as well as
non-Abelian statistics in the presence of 2n vortices [3].

Recently, the quantum spin Hall (QSH) state [4,5] has
been theoretically predicted [6] and experimentally ob-
served in HgTe quantum wells [7]. As a time-reversal
invariant (TRI) generalization of the QH state, the QSH
state is characterized by a Z2 topological number [8] and
gapless helical edge states, where time-reversed partners
counterpropagate [9,10]. Given the analogy between the
chiral superconducting state and the QH state, and with the
recent discovery of the TRI QSH state, it is natural to
generalize the chiral pairing state to the helical pairing
superconducting state, where fermions with up spins are
paired in the ðpx þ ipyÞ state, and fermions with down

spins are paired in the ðpx � ipyÞ state. Such a TRI state

has a full gap in the bulk, and counterpropagating helical
Majorana states at the edge (in contrast, the edge states of
the TRI topological insulator are helical Dirac fermions
with twice the degrees of freedom). As is the case for the
QSH state, a mass term for the edge states is forbidden by
TR symmetry, and therefore, such a superconducting phase
is topologically protected in the presence of time-reversal

symmetry, and can be described by topological quantum
numbers. (See also Refs. [11,12]). The four types of 2d
topological states of matter discussed here are summarized
in Fig. 1. Following the generalization of the QSH state to
3d [13–15], the 3d generalization of the TRI topological
superconducting state can be obtained straightforwardly,
and has 2d gapless Majorana surface states protected by
TR symmetry. The TRI superconductor can be classified
by a Z2 topological number in 2D, and an integer Z
topological number in 3D. The later case differs from the
classification of the 3D topological insulator, due to dis-
tinct properties of the Majorana fermions.
Recently, the QSH state has been shown to lead to spin-

charge separation [16,17]. In this work, we show that the
2d and 3d TRI topological superconductors are also char-
acterized by a profound topological phenomena—an emer-

FIG. 1 (color online). (Top row) Schematic comparison of 2d
chiral superconductor and the QH state. In both systems, TR
symmetry is broken and the edge states carry a definite chirality.
(Bottom row) Schematic comparison of 2d TRI topological
superconductor and the QSH insulator. Both systems preserve
TR symmetry and have a helical pair of edge states, where
opposite spin states counterpropagate. The dashed lines show
that the edge states of the superconductors are Majorana fermi-
ons so that the E < 0 part of the quasiparticle spectra are
redundant.
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gent supersymmetry. In 2d, we show that a TRI topological
defect of a Z2 nontrivial superconductor carries a Kramers’
pair of Majorana fermions. We prove the remarkable fact
that in the presence of such a defect, the TR operator T
changes the fermion number parity (or Witten index [18]),
T �1ð�1ÞNFT ¼ �ð�1ÞNF locally around the defect in the
Z2 nontrivial state, while preserving it, T �1ð�1ÞNFT ¼
ð�1ÞNF , in the Z2 trivial state. Thus, given a TRI vortex, its
time-reversed partner is actually its superpartner. A super-
symmetric operation can be defined as an operation
which changes the fermion number parity; therefore, in
this precise sense, we show that the TR symmetry
emerges as a supersymmetry in topological superconduc-
tors. This fact gives a precise physical definition of the Z2

topological classification of any TRI superconductor and is
generally valid in the presence of interactions and disorder.
Our proposal offers the opportunity to experimentally ob-
serve supersymmetry in condensed matter systems without
any fine tuning of microscopic parameters. In fact, one
strong candidate for a realistic system is the BW phase of
3He [19].

As the starting point, we consider a TRI p-wave super-
conductor with spin triplet pairing, which has the following
4� 4 Bogoliubov–de Gennes Hamiltonian,

H ¼ 1

2

Z
d2x�yðxÞ �pI i�2���

�jpj

H:c: ��pI

 !
�ðxÞ (1)

with �ðxÞ ¼ ðc"ðxÞ; c#ðxÞ; cy" ðxÞ; cy# ðxÞÞT , �p ¼ p2=2m�
� the kinetic energy and chemical potential terms, and
H:c: � ði�2���

�jpjÞy. The TR transformation is defined

as c" ! c#; c# ! �c". It can be shown that the Hamiltonian

(1) is time-reversal invariant if ��j is a real matrix. To

show the existence of a topological state, consider the TRI
mean-field ansatz ��1 ¼ �ð1; 0; 0Þ, ��2 ¼ �ð0; 1; 0Þ. For
such an ansatz, the Hamiltonian (1) is block diagonal with
only equal spin pairing,

H ¼ 1

2

Z
d2x ~�y

�p �pþ
�p� ��p

�p ��p�
��pþ ��p

0
BBB@

1
CCCA ~�

(2)

with ~�ðxÞ � ½c"ðxÞ; cy" ðxÞ; c#ðxÞ; cy# ðxÞ�T , and p� ¼
px � ipy. From this, we see that spin-up (down) electrons

form px þ ipy (px � ipy) Cooper pairs, respectively.

In the weak pairing phase with �> 0, the ðpx þ ipyÞ
chiral superconductor is known to have chiral Majorana
edge states propagating on each boundary, described by the

Hamiltonian Hedge ¼
P

ky�0vFkyc�kyc ky , where c�ky ¼
c y

ky
is the quasiparticle creation operator [2] and the

boundary is taken parallel to the y direction. Thus, in
analogy with the QSH system, we know that the edge
states of the TRI system described by Hamiltonian (2)
consist of spin-up and spin-down quasiparticles with op-

posite chirality:

Hedge ¼
X
ky�0

vFkyðc�ky"c ky" � c�ky#c ky#Þ: (3)

The quasiparticle operators c ky", c ky# can be expressed

in terms of the eigenstates of the BdG Hamiltonian

as c ky" ¼
R
d2x½ukyðxÞc"ðxÞ þ vkyðxÞcy" ðxÞ�, c ky# ¼R

d2x½u��ky
ðxÞc#ðxÞ þ v�

�ky
ðxÞcy# ðxÞ� from which the time-

reversal transformation of the quasiparticle operators can
be determined to be T �1c ky"T ¼ c�ky#, T

�1c ky#T ¼
�c�ky". In other words, (c ky", c�ky#) transforms as a

Kramers’ doublet, which forbids a gap in the edge state
spectrum when TR is preserved by preventing the mixing
of the spin-up and spin-down modes. To see this explicitly,
notice that the only ky-independent term that can be added

to the edge Hamiltonian (3) is im
P

ky
c�ky"c ky# with m 2

R. However, such a term is odd under TR, which implies
that any backscattering between the quasiparticles is for-
bidden by TR symmetry. The discussion above is exactly
parallel to the Z2 topological characterization of the QSH
system. In fact, the Hamiltonian (2) has exactly the same
form as the four-band effective Hamiltonian proposed in
Ref. [6] to describe HgTe quantum wells with the QSH
effect. The edge states of the QSH insulators consist of an
odd number of Kramers’ pairs, which remain gapless under
any small TR-invariant perturbation [9,10]. Such a ‘‘helical
liquid’’ with an odd number of Kramers’ pairs at the Fermi
energy cannot be realized in any bulk 1d system, and can
only appear as an edge theory of a 2d QSH insulator [9].
Similarly, the edge state theory Eq. (3) can be called a
‘‘helical Majorana liquid,’’ and can only exist on the
boundary of a Z2 topological superconductor. Once such
a topological phase is established, it is robust under any
TRI perturbations such as Rashba-type spin-orbital cou-
pling HR ¼ R

d2xcyðxÞ�ð�xpy � �ypxÞcðxÞ and s-wave

pairing Hs ¼
R
d2x½�sc

y
" c

y
# ðxÞ þ H:c:�, even if spin con-

servation is broken.
The Hamiltonian (1) can be easily generalized to three

dimensions, in which case ��j becomes a 3� 3 matrix
with � ¼ 1, 2, 3 and j ¼ x, y, z. An example of such a
Hamiltonian is given by the well-known 3He BW phase,
for which the order parameter ��j is determined by an
orthogonal matrix ��j ¼ �u�j, u 2 SOð3Þ [19]. Here and
below, we ignore the dipole-dipole interaction term [20]
since it does not affect any essential topological properties.
By applying a spin rotation, ��j can be diagonalized to
��j ¼ ���j, in which case the Hamiltonian (1) has the
same form as a 3d Dirac Hamiltonian with momentum
dependent mass �ðpÞ ¼ p2=2m��. We know that a band
insulator described by the Dirac Hamiltonian is a 3d Z2

topological insulator for �> 0 [13–15], and has non-
trivial surface states. The corresponding superconductor
Hamiltonian describes a topological superconductor with
2d gapless Majorana surface states. The surface theory can
be written as
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Hsurf ¼ 1

2

X
k

vFc
T�kð�zkx þ �xkyÞc k (4)

which remains gapless under any small TRI perturbation
since the only available mass termm

P
kc

T�k�yc k is time-

reversal odd. Interestingly, surface Andreev bound states in
the 3He-BW phase have been observed experimentally ,
and if they have a topological origin, their properties will
be sensitive to TR breaking like their counterparts, the
QSH edge states [7]. The gapless nature of the surface
states is only protected by the presence of TR symmetry, so
applying a magnetic field should open a measurable gap in
the surface state spectrum. Different from the 2d case, the
3d TRI topological superconductor is characterized by an
integer [12] rather than Z2, since a surface state theory with
even number of surface Majorana cones can also be topo-
logically stable. However, for the purpose of the present
Letter, only the Z2 part (even or odd number of surface
Majorana cones) is important.

To illustrate the physical consequences of the nontrivial
topology, we study the TRI topological defects of the
topological superconductors. We start by considering the
BdG Hamiltonian (2) in which spin-up and down electrons
form px þ ipy and px � ipy Cooper pairs, respectively. A

TRI topological defect can be defined as a vortex of spin-
up superfluid coexisting with an antivortex of spin-down
superfluid at the same position. In the generic Hamiltonian
(1), such a vortex configuration is written as ��j ¼
fexp½i�2�ðr� r0Þ�g�j, � ¼ 1, 2, and �3j ¼ 0, where
�ðr� r0Þ is the angle of r with respect to the vortex
position r0. Since in the vortex core of a weak pairing px þ
ipy superconductor there is a single Majorana zero mode

[2,22], one immediately knows that a pair of Majorana zero
modes exist in the TRI vortex core. In terms of the electron
operators, the two Majorana fermion operators can be

written as �" ¼
R
d2x½u0ðxÞc"ðxÞ þ u�0ðxÞcy" ðxÞ�, �# ¼R

d2x½u�0ðxÞc#ðxÞ þ u0ðxÞcy# ðxÞ� where we have used the

fact that the spin-down operator can be obtained from the
time-reversal transformation of the spin-up one. The
Majorana operators satisfy the anticommutation relation
f��; �	g ¼ 2��	, and the TR transformation of the

Majorana fermions is T �1�"T ¼ �#, T �1�#T ¼ ��".
Similar to the case of the edge states studied earlier, the
Majorana zero modes are robust under any small TRI
perturbation, since the only possible term im�"�# which
can lift the zero modes to finite energy is TR odd, i.e.,
T �1i�"�#T ¼ �i�"�#.

From the two Majorana zero modes �", �#, a complex

fermion operator can be defined as a ¼ ð�" þ i�#Þ=2,
which satisfies the fermion anticommutation relation
fa; ayg ¼ 1. Since �", �# are zero modes, we obtain

½a;H� ¼ 0; i.e., a is the annihilation operator of a zero-
energy quasiparticle. Thus, the ground state of the system
is at least twofold degenerate, with two states jG0i and
jG1i ¼ ayjG0i containing 0 and 1 a-fermions. Since
aya ¼ ð1þ i�"�#Þ=2, the states jG0ð1Þi are eigenstates of

i�"�# with eigenvalues �1ðþ1Þ, respectively. Thus, from
the oddness of i�"�# under TR, we know that jG0i and jG1i
are time-reversed partners. In the superconductor, fermion
number parity ð�1ÞNF is conserved, and all the eigenstates
of the Hamiltonian can be classified by their values of
ð�1ÞNF . If, say, jG0i is a state with ð�1ÞNF ¼ 1, then
jG1i ¼ ayjG0i must satisfy ð�1ÞNF ¼ �1. Since jG0i
and jG1i are time-reversal partners, we know that in the
Hilbert space of the zero-energy states, the TR transforma-
tion changes the fermion number parity:

T �1ð�1ÞNFT ¼ �ð�1ÞNF : (5)

Equation (5) is the central result of this Letter. Since a
transformation changing fermion number by an odd num-
ber is a ‘‘supersymmetry,’’ the TR symmetry emerges as a
discrete supersymmetry for each TRI topological defect. A
TRI vortex and its time-reversed partner are actually super-
partners. This has a striking consequence. Typically, when
excitations and their time-reversed partners fuse, they form
a boson, e.g., spin-up and down electrons with opposite
momenta form Cooper pair bosons or a conventional
s-wave vortex and antivortex pair annihilating into a bo-
sonic vacuum. Here, however, because of the supersym-
metric nature, a vortex and its time-reversed partner
annihilate to leave behind a fermion as illustrated in
Fig. 2. This occurs because the time-reversal operator
becomes a supercharge which carries fermionic quantum
numbers. Similar analysis applies to the edge theory (3),

FIG. 2 (color online). (a) The fusion of two vortices with
opposite vorticity in a conventional superconductor. The two
vortices are time-reversal partners, and they fuse into a boson.
(b) The fusion of two vortices with opposite vorticity in a Z2

topological superconductor. The two vortices are superpartners,
and they fuse into a fermion. The insets indicate schematic
Feynman diagrams of these two processes.
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which shows that in the 1d helical Majorana liquid is also a
theory with TR symmetry as a discrete supersymmetry.

At a first glance, Eq. (5) seems to contradict the funda-
mental fact that the electron number of the whole system is
invariant under TR. Such a paradox is resolved by noticing
that there are always an even number of topological defects
in a closed system without boundary. Under the TR trans-
formation, the fermion number parity around each vortex
core is odd, but the total fermion number parity remains
even as expected. Equation (5) is a generic definition of
TRI topological superconductors: A two-dimensional TRI
superconductor is Z2 nontrivial if and only if fermion
number parity around a TRI topological defect is odd
under TR.

All the conclusions above can be generalized to 3d
topological superconductors and superfluids. In the 3He
BW phase, the Goldstone manifold of the order parameter
is ��j ¼ �u�j 2 SOð3Þ �Uð1Þ [19,23]. A time-reversal
invariant configuration satisfies ��j 2 R, which restricts
the order parameter to SOð3Þ. TRI topological defects are
1d ‘‘vortex’’ rings and have a Z2 classification [19]. By
solving the BdG equations in the presence of such vortex
rings, it can be shown that there are linearly dispersing
quasiparticles propagating on each vortex ring. However,
for a ring with finite length, the quasiparticle spectrum is
discrete. Generically, there is no guarantee that a pair of
Majorana modes exist at exactly zero energy. The exis-
tence of zero modes on the vortex rings turns out to be a
topological property determined by the linking number
between different vortex rings. Here we will write our
conclusion and leave the details for a separate work:
There are a robust pair of Majorana fermion zero modes
confined on a vortex ring if and only if the ring is linked to
an odd number of other vortex rings. Such a condition is
shown in Fig. 3. Consequently, a physical definition of a

TRI topological superconductor in 3d is: A 3dTRI super-
conductor is Z2 nontrivial if and only if the fermion num-
ber parity around one of the two mutually linked TRI
vortex rings is odd under TR.
In conclusion, we introduced the concepts of TRI topo-

logical superconductors and superfluids and showed that a
supersymmetry emerges naturally in these systems as a
consequence of the time-reversal symmetry. To be more
precise, time-reversal symmetry relates two states (a
Kramers pair) with the opposite fermion number. Since
the time-reversal symmetry is ubiquitous, the resulting
supersymmetry can be realized without fine tuning, inde-
pendent of the microscopic details.
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FIG. 3 (color online). Illustration of a 3d TRI topological
superconductor with two TRI vortex rings which are (a) linked
or (b) unlinked. The E� kk dispersion relations show schemati-

cally the quasiparticle levels confined on the red vortex ring in
both cases. ‘‘�’’ and ‘‘�’’ stand for the quasiparticle levels that
are Kramers’ partners of each other. Only case (a) has a pair of
Majorana zero modes located on each vortex ring since the rings
are linked.

PRL 102, 187001 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending
8 MAY 2009

187001-4


