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We study transport of indirect excitons in GaAs=AlGaAs coupled quantum wells in linear lattices

created by laterally modulated gate voltage. The localization-delocalization transition for transport across

the lattice was observed with reducing lattice amplitude or increasing exciton density. The exciton

interaction energy at the transition is close to the lattice amplitude. These results are consistent with the

model, which attributes the localization-delocalization transition to the interaction-induced percolation of

the exciton gas through the external potential. We also discuss applications of the lattice potentials for

estimating the strength of disorder and exciton interaction.
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Transport of particles in periodic potentials is a basic
problem, which concerns a variety of systems extending
from condensed-matter systems with electrons in ionic
lattices to engineered systems such as photons in photonic
crystals and cold atoms in optical lattices. The particle
localization and localization-delocalization transition
(LDT) are perhaps the most interesting transport phe-
nomena. Particular cases of the latter—the metal-insulator
and superfluid-insulator transitions—have been exten-
sively studied for electrons, photons, and cold atoms in
lattices [1–6].

Both particle and lattice parameters can be controlled for
cold atoms in lattices. This has been intensively used for
the exploration of condensed-matter physics in a system of
cold atoms in lattices [3–6]. Here we study excitons in
electrostatic lattices created by a gate voltage. As for cold
atoms in lattices, in this system parameters of both the
lattice, e.g., the lattice amplitude, and the particles, e.g., the
exciton density, can be controlled. However, parameters of
excitons differ from the atomic ones by orders of magni-
tude. Therefore, exciton studies can give complementary
insights into this exciting field.

An indirect exciton in coupled quantumwells (CQWs) is
a bound state of an electron and a hole in separate wells
[Fig. 1(a)]. Lifetimes of indirect excitons exceed those of
regular excitons by orders of magnitude, and they can
travel over large distances before recombination [7–12].
Also, due to their long lifetime, these bosonic particles can
cool to temperatures well below the quantum degeneracy
temperature TdB ¼ 2�@2n=ðmgkBÞ [13]. (In the studied
CQW, excitons have the mass m ¼ 0:22m0, spin degener-
acy g ¼ 4, and TdB � 3 K for the density per spin n=g ¼
1010 cm�2.) Furthermore, indirect excitons in CQW have a
dipole moment ed, where d is close to the distance between
the QW centers. This allows imposing external potentials
Eðx; yÞ ¼ edFzðx; yÞ / Vðx; yÞ for excitons using a later-
ally modulated gate voltage Vðx; yÞ, which creates a trans-

verse electric field Fzðx; yÞ [7,12,14–20]. These properties
of indirect excitons distinguish them for studying transport
of cold interacting particles in tunable lattices from regular
excitons with d ¼ 0. Regular excitons cannot travel far and
cannot cool down to low temperatures due to their short
lifetimes and also interact only weakly and are controlled
less effectively by applied voltage due to the absence of a

FIG. 1. (a) Energy band diagram of the CQW. (b),
(c) Schematic electrode pattern. The applied base voltage V0

realizes the indirect regime while the voltage modulation �V
controls the lattice amplitude. Calculated lattice potential for
indirect excitons for �V ¼ 1 V is shown in (c). PL images of
indirect excitons for lattice amplitude (g)–(i) �V ¼ 0 and (d)–
(f) �V ¼ 1:2 V for excitation powers (d),(g) P ¼ 0:2, (e),
(h) 3.7, and (f),(i) 12 �W. T ¼ 1:6 K, �ex ¼ 633 nm, and V0 ¼
3 V for the data.
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built-in dipole moment. Transport in lattices is an addition
to a wide range of problems where indirect excitons are
explored, including pattern formation, coherence, and con-
densation (see [21] and references therein), transport, and
optoelectronics [7–12,14–20].

The lattice potential for indirect excitons EðxÞ was cre-
ated by interdigitated gates. Base voltage V0 ¼ 3 V real-
ized the indirect regime where indirect excitons are lower
in energy than direct excitons, while voltage modulation
�V controlled the lattice amplitude [Figs. 1(b) and 1(c)].
Note that in-plane electric field Fr present near electrode
edges can lead to exciton dissociation [14]. Therefore, the
CQW layers in our structure were positioned closer to the
homogeneous bottom electrode. This design suppresses Fr

making the field-induced dissociation negligible [17]. An
example of the calculated [17] (unscreened) EðxÞ is shown
in Fig. 1(c). Zero energy corresponds to zero voltage, and
the 4 meVenergy shift due to binding energy of the indirect
exciton is not shown. The potential modulation is nearly
sinusoidal: EðxÞ ¼ E0cos

2ðqx=2Þ. Its amplitude is E0 ¼
3 meV for �V ¼ 1 V and scales linearly with �V. The
lattice period 2�=q ¼ 2 �m is determined by the elec-
trode dimensions.

CQW structure was grown by molecular-beam epitaxy.
An nþ-type GaAs layer with nSi ¼ 1018 cm�3 serves as a
homogeneous bottom electrode. Semitransparent top elec-
trodes were fabricated by magnetron sputtering a 90 nm
indium tin oxide layer. CQWs with 8 nm GaAs QWs
separated by a 4 nm Al0:33Ga0:67As barrier were positioned
100 nm above the nþ-type GaAs layer within an undoped
1 �m thick Al0:33Ga0:67As layer. Excitons were photogen-
erated by a 633 nm HeNe or 786 nm Ti:sapphire laser
focused to a spot �10 �m in diameter in the center of the
150� 150 �m lattice. The exciton density was controlled
by the excitation power. Photoluminescence (PL) images
of the exciton cloud were captured by a CCD with a
bandpass filter 800� 5 nm covering the spectral range of
the indirect excitons. The diffraction-limited spatial reso-
lution was 1:5 �m [numerical aperture (NA) of 0.28]. The
spectra were measured using a spectrometer with resolu-
tion 0.18 meV.

Figure 1 shows images of the exciton cloud at zero
(�V ¼ E0 ¼ 0) and finite (�V ¼ 1:2 V, E0 ¼ 3:7 meV)
lattice amplitude for different excitation powers P. At low
P [Figs. 1(d) and 1(g)], the cloud profile essentially co-
incides with the laser excitation spot. This indicates
that excitons do not travel beyond the excitation spot;
i.e., they are localized. On the contrary, at high P
[Figs. 1(e), 1(f), 1(h), and 1(i)], the excitons spread beyond
the excitation spot indicating that they are delocalized. The
LDT occurs both with and without the lattice.

The lattice potential also causes periodic modulations
of PL characteristics. Figure 2 presents a PL image in
energy-x coordinates in the delocalized regime. Both the
integrated PL intensity IðxÞ and the average PL energy
@!ðxÞ show a small modulation at the lattice period
superimposed on a smoothly varying profile [Figs. 2(b)

and 2(c)]. To demonstrate the modulations more clearly,
we subtract the smooth component and plot the remainder
on a magnified scale in Figs. 2(b) and 2(c). Minima in
energy correspond to the maxima in intensity. We define
the amplitude of energy modulation as the difference be-
tween adjacent maxima and minima �! ¼ !max �!min.
Figure 2 shows that @�! is much smaller than the lattice
amplitude E0 ¼ 3:7 meV that is discussed below. No in-
tensity or energy modulation was observed at �V ¼ 0.
This indicates that the modulations in question are not
due to the partial light absorption in the top electrodes.
The PL intensity has a maximum along a ring in the

regime of delocalized excitons [Figs. 1(e), 1(f), 1(h), 1(i),
and 2(c)]. This so-called inner ring was previously ob-
served in PL patterns of indirect excitons without lattices
[9]. It was explained in terms of exciton transport and
cooling [9,11]. The inner ring effect persists in the lattice
[Figs. 1(e), 1(f), and 2(c)].
The full width at half maximum of the exciton cloud in

the x direction is plotted in Figs. 3(a) and 3(b). Initially, it is
practically independent of P but then starts to grow as P
increases. We define the excitation power at the transition
PLDT as the point where the extrapolation of this growth to
small P becomes equal to the low-P constant. At the LDT,
the exciton cloud starts to spread beyond the excitation
spot, and the cloud extension changes from constant to
increasing with P. Figure 3(a) shows that the transition is

FIG. 2 (color online). (a) The emission image in energy-x
coordinates for the lattice with �V ¼ 1:2 V (E0 ¼ 3:7 meV).
The image was measured at the center y ¼ 0 of the exciton cloud
and integrated over �y ¼ 1:5 �m. The corresponding (b) en-
ergy and (c) intensity profiles (black, left scale). The same
profiles with subtracted smooth background are used to present
the modulations in energy and intensity (red, right magnified
scale). The energy minima correspond to intensity maxima. The
PL linewidth does not exceed 2 meV that is characteristic of
excitonic emission. The dotted line shows the profile of the laser
excitation spot. The shaded area contains two deep intensity
minima caused by a defect in the spectrometer slit. T ¼ 1:6 K,
P ¼ 35 �W, �ex ¼ 633 nm, and V0 ¼ 3 V for the data.
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smooth. This yields PLDT � 2 �W for low lattice ampli-
tudes E0 & 1 meV. At higher E0 the LDT for the x direc-
tion shifts to higher excitation powers with increasing
lattice amplitude [Figs. 3(a) and 3(c)]. The LDT was also
observed with reducing lattice amplitude; see the data for
P ¼ 5 �W [Fig. 3(b)]. Note that excitons remain localized
at lower P ¼ 0:9 �W and delocalized at higher P ¼
21 �W for all E0 in Fig. 3(b).

The exciton transport along the y direction is only
weakly affected by the lattice [Figs. 1(d)–1(i)]. The LDT
for this direction shifts slightly to lower excitation powers
with increasing E0 [Fig. 3(c)].

The smooth component of the @!ðxÞ also exhibits an
interesting behavior. It increases with increasing exciton
density, with both increasing P or reducing jxj. Let �!LDT

denote the difference between the value of ! at the lowest
P and at the LDT at x ¼ 0. Figure 3(d) presents the
dependence of @�!LDT on E0. We see that it is finite at
E0 ¼ 0. At large E0 we observe a remarkable relation

@�!LDT � E0; (1)

which is crucial to our interpretation of the mechanism of
the LDT; see below.

Let us now discuss a simple model that attributes the
observed LDT to the interaction-induced percolation of
exciton gas through the total external potential EtotðrÞ,
which is the sum of the periodic lattice potential EðxÞ
and the random potentialErandðrÞ due to disorder. The latter

is an intrinsic feature of solid state materials. It forms
mainly due to QW width and alloy fluctuations in the
structure.
The idea is illustrated in Fig. 4 for the case of no disorder

ErandðrÞ � 0. If the local exciton density nðxÞ is low, it is
concentrated in the minima of the potential EðxÞ. The
crests are nearly depleted. As a result, the exciton transport
from one period of the lattice to the next through thermal
activation or quantum tunneling is exponentially slow. As
the average density increases and reaches a certain thresh-
old—‘‘percolation point’’—the crests become populated,
which permits a faster exciton transport, i.e., the observed
delocalization. This scenario naturally leads to Eq. (1); see
Fig. 4(b), where the middle curve corresponds to the
percolation point. It also explains why PLDT increases as
E0 goes up; see Fig. 3(d).
Adding disorder does not modify this picture greatly as

long as E0 remains larger than the characteristic amplitude
of Erand. Otherwise, the percolation is determined by the
random potential [22,23], so that the dependence of PLDT

and �!LDT on E0 saturates. The saturation point gives the
estimate of Erand. From Fig. 3(d), we find Erand � 0:8 meV.
This number is comparable to the PL linewidth at low
densities, suggesting that the disorder is responsible for
both of these energy scales.
For further estimates, we make the following simplify-

ing assumptions: (i) Erand � 0, while EðxÞ can be consid-
ered slowly varying; (ii) excitons reach a quasiequilibrium
state with local chemical potential �ðxÞ and temperature
TðxÞ, which are also slowly varying; (iii) exciton interac-
tion is local [dipolar tails (see below) are neglected]. Under
these assumptions, we obtain

�ðxÞ � �ðxÞ þ EðxÞ ’ const; (2)

nðxÞ’
Z 1

0

g�1d�

expf½�þRe�ð�;xÞ��ðxÞ�=kBTðxÞg�1
; (3)

FIG. 4 (color online). (a) Exciton density for (top to bottom)
� ¼ 5, 3.7, and 2.5 meV. The first of these corresponds to data at
x� 10 �m in Fig. 2. kBT ¼ 0:15 meV, E0 ¼ 3:7 meV, and
� ¼ 2:3 for all curves. (b) Lattice potential EðxÞ and the PL
energy shift @�!ðxÞ for the same set of parameters.
(c) Modulation �! ¼ !max �!min of the PL energy as a
function of the interaction strength �. The experimental �!
corresponds to � � 2:3. The value of � predicted by the ‘‘ca-
pacitor’’ formula [26–28,30] is indicated by the arrow.

FIG. 3 (color online). The FWHM of the exciton cloud across
the lattice (a) vs the excitation power P for lattice amplitudes
E0 ¼ 0, 0.6, 1.2, 1.9, 2.8, and 3.7 meV (�V ¼ 0, 0.2, 0.4, 0.6,
0.9, and 1.2 V) and (b) vs E0 for P ¼ 0:9, 5, and 21 �W. (c) The
excitation power at the transition from the localized to delocal-
ized regime PLDT as a function of E0. (d) The interaction energy
in the center of the exciton cloud at the transition from the
localized to delocalized regime @�!LDT as a function of E0.
Filled (open) squares in (c),(d) present the data for the exciton
transport across (along) the lattice. T ¼ 1:6 K (see Ref. [31]),
�ex ¼ 786 nm, and V0 ¼ 3 V for the data.
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where � is the electrochemical potential, �1 ¼ m=ð2�@2Þ
is the density of states per spin species, and�ð�Þ is the self-
energy (in the uniform state of the same n).

To find the equation for the PL energy shift @�!, we
take advantage of the smallness of Q, the range of in-plane
momenta collected by our optical system. It is given by
Q � 2�� ðNAÞ=� � ð0:45 �mÞ�1, which is indeed
small. In this case @�!ðxÞ ¼ Re�ð0; xÞ þ EðxÞ.

To complete the system of equations, we need a formula
for �ð�; xÞ. This self-energy is due to the exciton interac-
tion. At large r the interaction is known to be dominated by
dipole repulsion e2d2=ð	r3Þ. When excitons approach each
other, the interaction potential becomes complicated. What
appears to be certain is that for d ¼ 12 nm in our experi-
ment the exciton interaction remains strictly repulsive
[24,25], and so Re�ð0Þ increases with density: Re�ð0Þ ¼
tn. The growth of Re�ð0Þ with n implies an increase of the
PL energy @!, which is observed experimentally. The
calculation of function t ¼ tðn; TÞ> 0 remains a challeng-
ing open problem [24,26–30]. For the following rough
estimate, t is treated as a constant. We also assume that
Re�ð�Þ ’ Re�ð0Þ, which is reasonable for short-range
interactions. Substituting � ¼ tn into Eq. (3), after some
algebra we get

exp

�
� n

kBTg�1

�
þexp

�
��1��n

kBT�1

�
¼ 1; �¼ ��EðxÞ;

(4)

where the dimensionless parameter � ¼ t�1 characterizes
the strength of the interaction. Given � , T, and �, Eq. (4)
can be solved numerically for each EðxÞ. The results for
nðxÞ and �!ðxÞ are shown in Figs. 4(a) and 4(b).

The exciton interaction results in screening of the lattice
potential at points where local density is not small.
Because of this screening, the amplitude of the PL energy
modulation @�! is much smaller than E0. Consider points
jxj � 10 �m, on the inner ring. Here the exciton tempera-
ture is close to the sample temperature T ¼ 1:6 K [11].
From Fig. 2(b), we see that @�!ðxÞ � 0:07 meV, more
than an order of magnitude smaller than E0 ¼ 3:7 meV.
Using the above equations, we calculated �! as a function
of the adjustable parameter �; cf. Fig. 4(c). The experi-
mental value of @�! gives a rough estimate � � 2:3. In
comparison, the mean-field Hartree approximation [26–
28,30] yields the so-called ‘‘plate capacitor’’ formula
�cap ¼ ð2d=aeÞðm=meÞ � 7, where ae ¼ 10 nm is the

electron Bohr radius; see Fig. 4. The reduction of the
interaction constant compared to the �cap can be due to

correlation effects [24,29]. A systematic analysis of �
remains a problem for future research.

In summary, the localization-delocalization transition
for exciton transport across a linear lattice was observed
with reducing lattice amplitude or increasing exciton den-
sity. The exciton interaction energy at the transition is close
to the lattice amplitude. These results were discussed in
terms of the interaction-induced percolation of the exciton

gas through the external potential. Applications of the
lattice potentials for estimating the strength of disorder
and exciton interaction were also discussed.
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