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We predict a huge interference effect contributing to the conductance through large ultraclean quantum

dots of chaotic shape. When a double-dot structure is made such that the dots are the mirror image of each

other, constructive interference can make a tunnel barrier located on the symmetry axis effectively

transparent. We show (via theoretical analysis and numerical simulation) that this effect can be orders of

magnitude larger than the well-known universal conductance fluctuations and weak localization (both less

than a conductance quantum). A small magnetic field destroys the effect, massively reducing the double-

dot conductance; thus a magnetic field detector is obtained, with a similar sensitivity to a SQUID, but

requiring no superconductors.
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In the 1990s, interference effects (universal conductance
fluctuations and weak localization) were observed for elec-
trons flowing through clean quantum dots [1,2]. The cha-
otic shape of such dots makes these effects analogous to
speckle patterns in optics rather than to the regular inter-
ference patterns observed with Young’s slits or Fabry-Perot
etalons. While such interference phenomena are beautiful,
they have only a small effect on the properties of quantum
dots coupled to multimode leads. Here we provide a theo-
retical analysis and numerical simulations showing that a
much larger interference effect occurs in systems which are
mirror symmetric but otherwise chaotic [3–6], see Fig. 1.
We show that the mirror symmetry induces interference
that greatly enhances tunneling through a barrier located
on the symmetry axis; it can make the barrier become
effectively transparent. Thus an open double-dot system
with an almost opaque tunnel barrier between the two dots
will exhibit a huge peak in conductance when the two dots
are the mirror image of each other, see Fig. 2. This effect
could be used to detect anything that breaks the mirror
symmetry. For example, current 2D electron gas (2DEG)
technology [7] could be used to construct a device whose
resistance changes by a factor of 10, when an applied
magnetic flux goes from zero to a fraction of a flux quan-
tum. This sensitivity is similar to that of a SQUID, but is
achieved without superconductivity, facilitating integration
with other 2DEG circuitry.

Origin of the conductance peak.—The origin of the
effect can be intuitively understood by looking at Fig. 1.
Assume that electrons follow only the two paths shown
(instead of an infinite number of different paths). Path 1
does not tunnel the first time it hits the barrier, but does
tunnel the second time it hits it. Path 2 tunnels the first time
it hits the barrier, but not the second time. Quantum me-
chanics gives the probability to go from the left lead to the

right lead as jrð�Þtð�0ÞeiS1=@ þ tð�Þrð�0ÞeiS2=@j2, where the
scattering matrix of the tunnel barrier has amplitudes rð�Þ

and tð�Þ for reflection and transmission at angle �. If there
is no correlation between the classical actions of the two
paths (S1 and S2), then the cross term cancels upon aver-
aging over energy, leaving the probability as jrð�Þtð�0Þj2 þ
jtð�Þrð�0Þj2. In contrast, if there is a perfect mirror symme-
try, then S2 ¼ S1, and the probability is jrð�Þtð�0Þ þ
tð�Þrð�0Þj2, which is significantly greater than
jrð�Þtð�0Þj2 þ jtð�Þrð�0Þj2. Indeed, if we could drop the
� dependence of r and t, the probability would be doubled
by the constructive interference induced by the mirror
symmetry. A path that hits the barrier (nþ 1) times has
2n partners with the same classical action (each path seg-
ment that begins and ends on the barrier can be reflected
with respect to the barrier axis). However, the conductance
is not enhanced by 2n, because (due to the scattering matrix
of the barrier) there is also destructive interference when
one path tunnels (4j� 2) times more than the other (for
integer j).
The effect looks superficially like resonant tunneling.

However, that only occurs when dots are weakly coupled to
the leads, so that each dot has a peak for each level of the
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FIG. 1 (color online). A mirror-symmetric double dot, where
the classical dynamics is highly chaotic. We call it a ‘‘butterfly
double dot’’ to emphasize the left-right symmetry. Every classi-
cal path from the left lead to the right lead (solid line) which hits
the barrier more than once is part of a family of paths which are
related to it by the mirror symmetry (dashed line).
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closed dot and the current flow is enhanced when two
peaks are aligned. Instead, in our case each dot is well
coupled to a lead (with N � 1 modes), so the density of
states in each dot is featureless (the broadening of each
level is about N times the level spacing). Furthermore,
resonant tunneling occurs at discrete energies, while our
effect is largely energy independent. Another similar ef-
fect, called ‘‘reflectionless tunneling,’’ occurs when elec-
trons are retroreflected as holes, due to Andreev reflection
from a superconductor [8,9]. However, this retroreflection
transforms the classical dynamics in the dot from chaotic to
integrable [10], and large interference effects in integrable
systems are not uncommon (consider a Fabry-Perot eta-
lon). Here, the mirror symmetry induces a large interfer-
ence effect without any retroreflection and without a
change in the nature of the classical dynamics (chaotic
motion remains chaotic).

Semiclassical theory.—Our analysis uses the semiclas-
sical theory of transport through clean chaotic quantum
dots [11]. The conductance through a system whose di-
mensions are much greater than a Fermi wavelength can be
written as a double sum over classical paths � and �0,
which both start at a point y0 on the cross section of the left
lead and end at y on the right lead:

G ¼ ð2�@Þ�1G0

X

�;�0
A�A

�
�0 exp½iðS� � S�0 Þ=@� ; (1)

where G0 ¼ 2e2=h is the quantum of conductance, and S�
is the classical action of path �. A tunnel barrier with left-
right symmetry has a scattering matrix

S tbð�Þ ¼ ei�rð�Þ jrð�Þj �ijtð�Þj
�ijtð�Þj jrð�Þj

� �
; (2)

where rð�Þ and tð�Þ are the reflection and transmission
amplitudes for a plane wave at angle of incidence �.
Keeping only the upper sign in Stbð�Þ [12],

A� ¼
�
dpy0

dy

�
1=2

�

YmT ð�Þ

j¼1

ijtð�TjÞj
YmRð�Þ

k¼1

jrð�RkÞj (3)

where path � starts with a momentum across the left lead
py0 and a total momentum given by the Fermi momentum

pF [13]. This path reflects off the barriermRð�Þ times (with
the kth reflection at angle �Rk) and transmits mTð�Þ times
(at angles �Tk) before hitting the right lead at y. The factor
ðdpy0=dyÞ� is the stability of the path that would exist if the
barrier were absent for each transmission and impenetrable
for each reflection. For most pairs with � � �0, the ex-
ponent in Eq. (1) varies fast with energy, so that averaging
over energy removes such pairs from the double sum. We
keep only the main contributions surviving such averaging:
those where �0 can be constructed from � by means of the
reflection with respect to the barrier axis (symmetry axis)
of any path segment that begins and ends on the barrier, for
which S�0 ¼ S� at all energies [the paths thereby have the

same stability ðdpy0=dyÞ�]. Dropping weak-localization

effects [3,14], the average conductance reads

hGi ¼ G0
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(4)

where the product is ordered, and path � hits the barrier

nð�Þ times. The four-by-four matrix S ¼ Stb � Sy
tb gives

the scattering of the two paths at the barrier. Thus Sij gives

the weight to go from state j to state i, where we define
state 1 as both paths in the left dot, state 2 as path � in
the left dot and path �0 in the right dot, state 3 as path �
in the right dot and path �0 in the left dot, and state 4 as
both paths in the right dot. The matrix C�;m is diagonal

with elements: ½C�;m�11¼½C�;m�44¼1 and ½C�;m�22 ¼
½C�;m��33 ¼ exp½i�S�;m=@�. The action difference �S�;m is

that between path � in the left dot and its mirror image in
the right dot between the (m� 1)th and mth collision with
the barrier. For perfect symmetry Cm ¼ I and the product
equals ½Sn�41.
We assume that the classical dynamics is sufficiently

mixing that paths uniformly explore the dot between
subsequent collisions with the barrier (or leads). Defining
�S0=@ as the phase difference acquired in one time of flight
across the dot, we have C�;m ’ exp½��t�;m� where � is a

complex number, with Im½�� ’ h�S0i=ð�0@Þ and Re½�� ’
var½�S0�=ð�0@2Þ. The probability that a path survives in
the dot for a time t without hitting either the barrier or the

lead is e�t=�0D . Using this, we replace C�;m by its

time average C ¼ hC�;mi; its only nonzero elements are

C11 ¼ C44 ¼ 1 and C22 ¼ C�
33 ¼ ½1þ ��0D��1. Thus the

product in Eq. (4) reduces to ðCSÞn. The sum is over all �s
that hit the barrier n times, and is independent of y0, y. To

proceed, we define ~S � C1=2SC1=2; it is simple to show

that ½ðCSÞn�41 ¼ ½~Sn�41 for all n. Then, defining P ¼
Wtb=ðWtb þWÞ as the probability for a path to hit the
Wtb-wide barrier before escaping into the W-wide lead,

we find that hGi ¼ G0Nð1� PÞP1
n¼1 P

n½~Sn�41, where
N ¼ pFW=ð�@Þ is the number of modes in a lead. Upon

finding the matrix U, which diagonalizes ~S, one can evalu-
ate the geometric series in n.
This analysis gives the following average conductance

of the symmetric double dot (� ¼ 0),

hGsymi ¼ G0NPð1þ PÞTtb=½ð1� PÞ2 þ 4PTtb�; (5)

where Ttb is the tunneling probability jtð�Þj2 averaged over
all �. For Ttb < ð1� PÞ=2 (i.e., for Gtb, the conductance of
a barrier with transmission Ttb in a waveguide of widthWtb,
less than P times the conductance of the series of the two
constrictions), one finds that hGsymi is greater (often much

greater) than the tunnel barrier conductance Gtb. Thus
symmetrically placing constrictions on either side of the
barrier can strongly enhance its conductance, a stark ex-
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ample of the fact that quantum conductances in series are
not additive. In contrast, for the asymmetric double dot
(large �)

hGasymi ¼ G0NPTtb=½1� Pþ 2PTtb�; (6)

which is always less than Gtb. The ratio hGsymi=hGasymi is
plotted in Fig. 3. For any finite Ttb, the ratio is maximal at

P ¼ ð1� 2T1=2
tb Þ=ð1� 4TtbÞ. This choice of P gives

hGsymi ¼ G0N=4 and (for small Ttb) hGasymi ’
T1=2
tb G0N=2. Thus the conductance ratio can be arbitrarily

large for a highly opaque barrier.
Peak shape with symmetry-breaking.—The effect of the

mirror symmetry is suppressed by (a) a perpendicular
magnetic field B, (b) moving the boundary of one dot by
a distance �L, (c) disorder with a mean free time between
subsequent disorder-scatterings �mf , or (d) decoherence on
a time scale �’. The suppression is given in terms of the

following parameters:

�B ¼ �ðeBA=hÞ2=�0; (7)

�boundary ¼ ��1
0 ðvar½�L�=�2

F þ ih�Li=�FÞ; (8)

�mf ¼ ��1
mf ; �’ ¼ ��1

’ ; (9)

where e is the electronic charge, A is the area of one dot,
and �0 is the time to cross the dot. In �B, the constant � is
of order one, but is hard to estimate [15]. For �boundary, we

have h�Li � x	 and var½�L� � x2ð	� 	2Þ, if a fraction 	
of the left dot is deformed outwards by a distance x. For
multiple asymmetries, the total � is the sum of the indi-
vidual �s given above. For real �,

hGð�Þi ¼ hGasymi þ
hGsymi � hGasymi

1þ FðP; TtbÞ 	 ��0D
; (10)

where FðP; TtbÞ ¼ hGsymi=½hGasymið1þ PÞ�, and �0D �
�L�0=ðW þWtbÞ is the typical time a path spends in one
dot before hitting a lead or the barrier. For the large
conductance ratio [see below Eq. (6)], FðP; TtbÞ�0D is about
half the dwell time in the double dot, �D � ð1� PÞ�1�0D.
Thus the conductance is a Lorentzian function of the
B field, with similar width to the weak-localization dip in
the same system with no barrier [14]. This makes the
system an extremely sensitive detector of magnetic fields
and deformations of the confining potential (for example,
due to charges moving near one dot). Intriguingly, if lead
positions break the symmetry the peak remains, it is only
suppressed with asymmetry parameter �lead ¼ ð1�
PÞ=�0D.

For complex �, as in Fig. 2(b), we have no analytic result
for hGð�Þi, but we can get it by numerically diagonalizing

the 4-by-4 matrix ~S. In Fig. 2(b), the data and the theory
curve drop below hGasymi ¼ 0:23G0. We will show else-

where that this is due to destructive interference. The

conductance rises back up to hGasymi when the barrier is

moved a wavelength or so.
Proposal for experimental observation.—Consider mak-

ing such a double dot in an ultraclean two-dimensional
electron gas (2DEG) at the lowest achievable temperatures
[7]. A finger gate could define the barrier [16], with split
gates controlling the lead widths. To maximize the effect
for a 2DEG with a mean free path [7] of order 500 
m,
each dot (see Fig. 2) can have size L ¼ 4 
m (circum-
ference �3:6L� 15 
m) with 12 mode leads (W ¼
310 nm� 6�F). A barrier with Ttb ¼ 1:48	 10�3 and
width Wtb ¼ L gives P ¼ 0:93 and �0D � 3:5�0. In this
case, hGsymi ’ 14hGasymi ’ 3:2G0 (resistance Rsym �
5 k�). The crossover from hGsymi to hGasymi happens for
� ’ 0:14=�0D � 0:04=�0. At low temperatures (�’ > �mf),

disorder will suppress the peak to about 83% of hGsymi,
since FðP; TtbÞ�mf�

0
D � 0:2. Thus the double-dot conduc-

tance will drop by an order of magnitude if 10% of the
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FIG. 2 (color online). Average conductance as (a) a function of
applied B field (with the barrier on the symmetry axis), and as
(b) a function of the barrier position (for zero B field). The latter
mimics the effect of gates that reduce the size of one dot relative
to the other. The data points come from simulations performed
for the structures shown in the insets. The curve comes from the
semiclassical theory; in (b) there is no fitting parameter, while in
(a) an unknown parameter (of order one) is adjusted to fit the
data. The conductance of the tunnel barrier alone is Gtb.
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boundary of one dot is moved by �F=2, or if a B field is
applied such that a fifth of a flux-quantum threads each dot.
The latter is a B-field sensitivity similar to that of a
SQUID.

The main experimental challenge will be to define dots
that are mirror symmetric on a scale significantly less than
�F � 50 nm. We suggest that each dot should be defined
by means of multiple gates (made as symmetric as pos-
sible); their voltages can then be tuned to maximize the
symmetry. We propose the following protocol for this
maximization. Starting with very wide leads, in such a
way that P is far from unity and the conductance peak is
very broad, one scans the dot-defining gate voltages over a
broad range to reveal the approximate symmetry point
(maximal conductance). One then narrows the leads (in-
creasing P) so the peak in hGi is higher and narrower, and
adjusts the dot-defining gate voltages to maximize hGi.
Repeating this will give the symmetry point with increas-
ing accuracy, up to the limit imposed by inherent asymme-
tries (disorder, etc.).

Numerical simulations.—For the above maximization
we took Wtb ¼ L and only 12 lead modes. This calls into
question two assumptions in the theory. First, we can no
longer assume that paths in the dot will be well randomized
between collisions with the barrier, since �0D � 3:6�0.
Second, we may not be able to neglect other interference
effects (weak-localization, etc.), since hGi is at most a few
G0. Thus, to verify that the effect is as expected in such a
parameter regime, we numerically simulated a stadium
billiard containing a barrier with Ttb ¼ 1:48	 10�3, see
Fig. 2. We use the recursive Green’s function technique
[17] working in real space for the direction of current
propagation (cut into multiple slices) and in mode space
for the transverse direction. Magnetic fields are in a
Landau gauge where the vector potential is oriented in
the transverse direction [18]. The number of longitudinal
slices and transverse modes was increased until the results

converged. The data shown here are for 836 longitudinal
slices (200 of which are in the outer leads) and 200
transverse modes. We mimic thermal smearing, at a tem-
perature of 23 mK, by averaging over 44 energies uni-
formly distributed over an interval of 0.02 meVaround the
Fermi energy of 9.02 meV. We use the effective mass in
GaAs of 0:067m0. The simulation (data points in Fig. 2)
clearly shows that the effect exists in this regime. Indeed,
despite the assumptions in its derivation, the theory (solid
curve) agrees surprisingly well with the numerical data.
Concluding comment.—The conductance peak is not

destroyed by bias voltages or temperatures greater than
@=�D, because the mirror symmetry is present at all ener-
gies and not just at the chemical potential (unlike the
electron-hole symmetry for reflectionless tunneling into a
superconductor). Large biases or temperatures should still
be avoided, as they increase the decoherence.
We thank M. Houzet and P. Brouwer for discussions.
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FIG. 3 (color online). Plot of the ratio hGsymi=hGasymi, given
by Eqs. (5) and (6). The ratio grows as Ttb ! 0 for all P
(although hGsym;asymi shrink). For given Ttb, the ratio is maximal

at P ¼ ð1� 2T1=2
tb Þ=ð1� 4TtbÞ.
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