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Recent small angle neutron scattering suggests that the spin structure in the A phase of MnSi is a so-

called triple-Q state, i.e., a superposition of three helices under 120 degrees. Model calculations indicate

that this structure in fact is a lattice of so-called Skyrmions, i.e., a lattice of topologically stable knots in

the spin structure. We report a distinct additional contribution to the Hall effect in the temperature and

magnetic field range of the proposed Skyrmion lattice, where such a contribution is neither seen nor

expected for a normal helical state. Our Hall effect measurements constitute a direct observation of a

topologically quantized Berry phase that identifies the spin structure seen in neutron scattering as the

proposed Skyrmion lattice.
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Many years ago, Skyrme showed that topologically
stable objects of a nonlinear field theory for pions can be
interpreted as protons or neutrons [1,2]. This seminal paper
inspired the search for topologically stable particlelike
objects in a broad range of fields ranging from high-energy
to many areas of condensed-matter physics. For instance,
twenty years ago, it has been predicted that Skyrmions
exist in anisotropic spin systems with chiral spin-orbit
interactions, where they are expected to form crystalline
structures [3,4]. Lattices of Skyrmions have also been
suggested to occur in dense nuclear matter [5] or in quan-
tum Hall systems near Landau level filling factor � ¼ 1
[6]. However, thus far, the experimental evidence is only
indirect [7,8].

Recently, we reported microscopic evidence of a
Skyrmion lattice in the A phase of the transition metal
compound MnSi using small angle neutron scattering
(SANS) [9]. The SANS data show magnetic Bragg peaks
with a hexagonal symmetry consistent with the superposi-
tion of three helices under an angle of 120 degrees—a so-
called triple-Q structure. The three helices are thereby
confined to a plane strictly perpendicular to the applied
magnetic field. A detailed theoretical analysis [9] of an
appropriate Ginzburg-Landau model suggested that a lat-
tice of anti-Skyrmion lines forms in the A phase of MnSi,
similar to the vortex lattice in superconductors.

However, whether the spin structure in the A phase
indeed represents a Skyrmion lattice depends crucially on
the phase relationship of the helices that are superimposed
[10]. This phase information could not be extracted from
the SANS data. In contrast to neutron scattering, the phase
relationship of the helices, and thus existence of topologi-
cally nontrivial spin structures, may be established directly
by means of the so-called topological Hall effect (THE) as
has been suggested in Ref. [10]. The perhaps most con-
vincing example of a topological Hall effect has been
reported for 3D pyrochlore lattices [11,12]. However, in
these systems, the noncoplanar spin structure is due to

frustration on short length scales; i.e., the spin structure
is not a continuous field for which topological properties
may be defined in a strict sense. The topological Hall effect
has also been considered, e.g., in La1�xCoxMnO3 [13],
CrO2 [14], and Gd [15], but there is essentially no inde-
pendent microscopic information on the relevant spin
structures.
The origin of the topological Hall effect is a Berry phase

collected by the conduction electrons when following
adiabatically the spin polarization of topologically stable
knots in the spin structure [10,11,13,16–18]. Thus, the
Berry phase reflects the chirality and winding number of
the knots. The topological Hall effect arises besides the
normal Hall effect, which is proportional to the applied
magnetic field, and the anomalous Hall effect (AHE) that
scales with ferromagnetic components of the magnetiza-
tion [19–21]. The AHE may be viewed in terms of Berry
curvature in momentum space [22,23] as opposed to real
space for the topological Hall effect .
In our study of the Hall effect in MnSi, we find a distinct

anomalous contribution in the A phase. The sign of this
contribution is opposite to the normal Hall effect, and the
prefactor is quantitatively consistent with the Skyrmion
density derived from neutron scattering and theory. The
observation of this Hall effect provides clear experimental
evidence that the magnetic structure observed in neutron
scattering has indeed the topological properties (chirality
and winding number) of the proposed Skyrmion lattice.
As a function of temperature T, the itinerant-electron

magnet MnSi develops long-range single-Q helimagnetic
order below Tc ¼ 29:5 K. The helimagnetic state may be
understood as the result of a hierarchy of energy scales
[24,25], where ferromagnetic exchange on the strongest
scale and the isotropic Dzyaloshinsky-Moriya spin-orbit
interactions due to the lack of inversion symmetry of the
cubic B20 structure give rise to a long-wavelength heli-

magnetic modulation, where �h � 190 �A. The propaga-

tion vector ~Q of the helix is pinned to the cubic space-
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diagonal, ~Q k h111i, by higher order spin-orbit coupling
terms, which represent the weakest scale.

Under magnetic field, the helical wave vector ~Q is
unpinned from the h111i directions and aligns parallel to
the applied magnetic field for B> Bc1 � 0:1 T. The mag-
netic state above Bc1 is also referred to as a conical state
because it consists of a superposition of a helical modula-

tion ~MQ with a uniform magnetization ~M0, where ~Q k ~M0.

The helical modulation is suppressed altogether for a mag-
netic field exceeding Bc2ðT ! 0Þ � 0:6 T. In the vicinity
of Tc, a small phase pocket has been observed referred to as
the A phase [26]. The specific heat, susceptibility, and
neutron scattering establish that the A phase is a distinct
phase with a first-order phase transition separating it from

the conical phase. It had further been established that ~Q in
the A phase aligns perpendicular to the applied magnetic
field [27,28]; however, neither had the full spin structure
been resolved, nor was there a plausible explanation for
~Q ? ~B prior to our study [9].
The Hall effect and the magnetoresistance in MnSi have

been studied before for temperatures below Tc and mag-
netic field up to 5 T [29]. These measurements were
analyzed in terms of the sum of normal and anomalous
Hall currents, �xy ¼ �N

xy þ �A
xy, respectively. This con-

trasts the conventional Karplus-Luttinger Ansatz of a
sum of normal and anomalous Hall resistivities, �xy ¼
R0Bþ�0RsM. It was, in particular, noticed that below
Tc,�

A
xy ¼ SHM, where SH is independent of T and Bwhile

�N
xy � �R0B=�

2
xx changes by a factor of 100 between 5 K

and Tc, reflecting the strong T-dependence of the resistiv-
ity �xx.

For our study, single-crystal samples were cut from an
ingot that had been studied before by various bulk proper-
ties, SANS [9] and Larmor diffraction [30]. The samples
were oriented with x-ray Laue diffraction and polished to
size. Sample 1 was oriented for measurements with B
parallel [110] and electric current I parallel [001] and

sample 2 for ~B k ½111� and I k ½1�10�. The sample dimen-
sions as determined with a light microscope were 1�
1:5� 0:13 mm3 and 1:6� 3:1� 0:15 mm3 for sample 1
and 2, respectively. Quite generally, the geometry factor in
studies of this kind can be determined only quite inaccur-
ately. Because MnSi has a cubic structure and Tc is small as
compared with room temperature, we determined the ge-
ometry factors from the longitudinal and Hall resistivities
at ambient conditions, �xxð300 K; 0 TÞ ¼ 180 ��cm and
�xyð300 K; 8 TÞ ¼ �126 n�cm, respectively [29,31,32]

(note the difference of units for �xy). Data reported in

this Letter were corrected for demagnetizing effects, where
the demagnetizing factors were determined consistently
from measurements of the dc magnetization for various
sample dimensions and theoretical estimates.

The resistivity and the Hall effect were measured simul-
taneously in a standard six terminal configuration. Data
were recorded down to 2.5 K at magnetic fields up to 9 T.

Symmetric and antisymmetric signal contributions in �B
were determined, where data shown here for �xy represent

the antisymmetric part of the signal at the Hall contacts.
We note that our Hall data are perfectly consistent with
previous studies [29]. However, we have achieved a much
better resolution, making possible the observation of the
additional anomalous contributions in the A phase (for
further details see Ref. [32]).
Shown in Fig. 1 is the Hall resistivity �xy of MnSi for

~B k ½110� and I k ½001�. At room temperature, the behav-
ior is dominated by the normal Hall effect, where we
observe essentially no T dependence. In the conventional
interpretation, the slope of the Hall resistivity corresponds
to a nominal charge carrier concentration n ¼ ðR0eÞ�1 ¼
3:78� 1022 cm�3 [33]. The overall behavior of �xy at low

T is fairly complex, but perfectly consistent with Ref. [29].
Shown in Fig. 2(a) is �xy as measured in the regime

of the A phase, where a small additional contribution
appears. We have approximated the signal linearly from
below to above the A phase and subtracted this part of the
total signal. The resulting contribution ��xy is shown in

Fig. 2(b), where the curves have been shifted vertically for
better visibility [34]. In Fig. 3, we show a rough estimate of
the magnitude of the contribution, where we plot the peak
value. The error bars represent a conservative estimate of
systematic errors. Within experimental uncertainties, we
find ��xy � 4:5� 1 n�cm.

As a final test, we find remarkable agreement between
the field and T range in which we observe ��xy with the

regime of the A phase inferred from the ac susceptibility
reported in [35] (Fig. 4). This clearly confirms that the
additional Hall signal is correctly attributed to the A phase.
The key features of ��xy observed in the A phase may be

summarized as follows: (i) the sign of the signal is opposite
to the normal Hall effect; (ii) the magnitude of the signal is
roughly ��xy � 4:5 n� cm; (iii) the signal is roughly the

FIG. 1 (color online). Hall resistivity for single crystal MnSi,
where the magnetic field B was applied parallel to [110] and
the current was applied along [001]. Data for magnetic field
B k ½111� and current I k ½1�10� (not shown) are the same, as
expected for a cubic material.
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same for ~B k ½110� and ~B k ½111� and thus essentially
independent of direction.

We note that the magnetization in the A phase does not
show an additional ferromagnetic contribution that would
explain the additional anomalous contribution. Instead, for
increasing B, the magnetization slightly increases both
when entering and when leaving the A phase at Ba1 and
Ba2, respectively [35–37]. Correspondingly, the slope of
MðBÞ is reduced in the A phase. Thus,��xy must be related

to the modulated spin structure observed in neutron scat-
tering [9]. This already strongly suggests the existence of
topologically stable knots in the nontrivial spin structure.
Further, when the motion of conduction electrons fol-

lows a topologically nontrivial spin structure, the charge
carriers collect a Berry phase. This Berry phase may be
viewed as an Aharonov-Bohm phase arising from a ficti-

tious effective field ~Beff ¼ �0
~� with opposite sign for

majority and minority spins, where �0 ¼ h=e is the flux

quantum for a single electron [10,13,17,18]. Here, ~� is
given by the Skyrmion density

�� ¼ 1

8�
����n̂ � ð@�n̂� @�n̂Þ; (1)

where ���� is the antisymmetric unit tensor and n̂ ¼
~M=jMj [38]. The integrated Skyrmion density per unit
cell is a measure for a winding number and is therefore
quantized to an integer.
As for the normal Hall effect, the precise value of the

topological Hall contribution due to ~Beff depends in a
multiband system like MnSi on details of the band struc-
ture and the relative size of scattering rates. Because these
factors also enter in R0 in a similar way, using the mea-
sured value of R0 in Eq. (2) allows for a semiquantitative
prediction. In the adiabatic limit, where the spin polariza-
tion of charge carriers with infinite lifetime smoothly

follows the texture ~M, the topological Hall signal may be
expressed as [17,18]

��xy � PR0B
z
eff ; (2)

where ẑ is the direction of the applied field, R0 is the
normal Hall constant given above, and P measures the
local spin polarization of the conduction electrons. The
factor P arises from the majority- and minority-spin car-
riers, which collect Berry phases of opposite sign.
Therefore, the signal vanishes for vanishing polarization,
P ! 0, and is maximal for a fully polarized system, P ¼ 1.

For a single-Q structure, ~� ¼ 0 so that ~Beff ¼ 0 and there
is no topological Hall effect.
We may now compare the experimentally observed

Hall voltage ��xy � 4:5 n�cm with the predicted topo-

logical Hall signal. For the proposed lattice of anti-
Skyrmion lines in the A phase of MnSi,

R
dxdy�z ¼ �1

for each 2-dimensional magnetic unit cell [9]. This implies
that the effective field is quantized and oriented opposite to
the applied field. For MnSi, it follows that Beff � 2:5 T.
The polarization P ¼ �spo=�sat represents the ratio of the

ordered magnetic moment in the A phase �spo � 0:2�
0:05�B to the saturated magnetic moment �sat � 2:2�
0:2�B where the saturated moment may be taken, e.g.,
from the Curie Weiss moment in the paramagnetic state or
the free Mn moment [39]. Hence, the polarization is given
by P � 0:1� 0:02. Taken together, the theoretically pre-
dicted value of ��xy � 4 n�cm is in remarkable agree-

ment with experiment.

FIG. 2. (a) Hall resistivity �xy near Tc in the temperature and
field range of the A phase. (b) Additional Hall contribution ��xy

in the A phase. Data are shifted vertically for better visibility.

FIG. 3 (color online). Estimated contribution to the Hall effect
in the A phase. FS denotes data obtained in field sweeps; TS
denotes data obtained in temperature sweeps.
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While writing this manuscript, a similar Hall effect has
been reported for MnSi in the pressure range 6 to 12 kbar
[40]. This signal is over an order of magnitude larger than
the signal we report here and extends over a much larger
field range (0.1 to 0.5 T). Detailed susceptibility and mag-
netization measurements under pressure reported, e.g., in
Ref. [37] indicate, that the magnetic field range of the A
phase and the conical phase are unchanged up to roughly
11 kbar, where the A phase seems to vanish. Hence, due to
the lack of neutron scattering data under magnetic field and
pressure in the range 6 to 12 kbar, the precise spin structure
represents an exciting question for future research.

In conclusion, when taken together, the sign and quanti-
tative size of ��xy with the neutron scattering data re-

ported in Ref. [9], our study identifies the A phase of MnSi
as the proposed lattice of Skyrmions. In fact, our Hall
effect data constitute a direct observation of a topologically
quantized Berry phase, thereby unambiguously identifying
the proposed spin structure inferred from neutron
scattering.
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FIG. 4 (color online). Magnetic phase diagram of MnSi.
Comparison of the A phase as measured in the ac susceptibility
versus the Hall resistivity. Data points of the ac susceptibility are
taken from Ref. [35,37].
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