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We investigate the non-Abelian Josephson effect in F ¼ 2 spinor Bose-Einstein condensates with

double optical traps. We propose a real physical system which contains non-Abelian Josephson effect and

has very different density and spin tunneling characters compared with the Abelian case. We calculate the

frequencies of the pseudo Goldstone modes in different phases between two traps, respectively, which are

the crucial feature of the non-Abelian Josephson effect. We also give an experimental protocol to observe

this novel effect in future experiments.
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Introduction.—The Josephson effect is a quantum tun-
neling phenomenon which occurs when a pair of super-
conducting or superfluid systems are weakly linked by
some kind of physical barrier. Beginning with
Josephson’s original paper in 1962 [1], the Josephson
effect has become a paradigm of the phase coherence
manifestation in a macroscopic quantum system. With
the rapid experimental progress in cold atom physics, the
Josephson junction has been realized for the trapped Bose-
Einstein condensates (BEC) of 87Rb [2] and 23Na [3].
However, most of the extensive studies about this effect
focus on the Abelian case so far, in terms of a junction of
two systems with spontaneously broken Abelian symmetry
[4,5]. There are also some kinds of Josephson-type effect
without junctions, such as the spin mixing process of
spin-1 condensate in single well discussed in Ref. [6].

Recently, Esposito et al. generalized the Abelian
Josephson effect to the non-Abelian case in a field theoretic
language [7]. The non-Abelian Josephson effect emerges
in a junction of two weakly coupled systems with spon-
taneously broken non-Abelian symmetries, which often
involves multicomponent order parameters. The non-
Abelian nature of the symmetry will induce more than
one kind of tunneling mode in the Josephson effect.
These different tunneling modes can be characterized by
the excitation of so-called pseudo Goldstone bosons which
have small but finite masses [7]. The emergence of
pseudo Goldstone bosons is a consequence of the symme-
try breaking term due to the coupling between the two
condensates. Theoretically speaking, the non-Abelian
Josephson effect is ubiquitous in nature, covering many
topics from particle physics to condensed matter physics.
For example, it may be realized in the superfluid 3He
Josephson weak link [8], high density phases of QCD
[9], and artificial non-Abelian gauge field induced by non-
linear optics [10]. However, there are no specific experi-
mental constructions so far.

How can an experimental protocol be designed to ob-
serve this novel effect in future experiments? To our
knowledge, this effect has not been explicitly spelled out
in any real physical system, which is what we attempt to do
here. In order to generalize to the non-Abelian junction in
experiments, we need a system of multicomponent order
parameter which has a non-Abelian symmetry in the
ground state. In contrast with magnetic trap, the spin of
the alkali atoms is essentially free in an optical trap [11–
13]. This spinor nature properly provides the scenario of
our non-Abelian construction. We now briefly introduce
the system about a spinor atomic BEC in a double-well
optical trap. Although the dynamical tunneling properties
of spin-1 and ‘‘pseudo spin-1=2’’ bosonic systems have
been calculated [14–18], the essence of the non-Abelian
effect has not been captured yet. In present Letter, we focus
on the pseudo Goldstone modes due to the non-Abelian
symmetry breaking, which is at the heart of Josephson
effect. For concrete construction, we propose spin-2 BEC
in double optical traps. The spin-2 system has possible
advantages, compared with the spin-1 system, in the sense
that the symmetry properties are much richer to explore the
non-Abelian effect. We should note that in the spin-1 sys-
tem some elements of the symmetry group are hidden in
the ground state. For example, in the polar state of the
spin-1 system, the symmetry group of ground state is
Uð1Þ � Sð2Þ which is a subgroup of the symmetry group of
the Hamiltonian Uð1Þ � SOð3Þ [13]. The reason why this
happens is that in the low spin system, some rotation in the
symmetry group of the Hamiltonian will leave the ground
state unchanged and does not contribute to Goldstone
modes. In contrast, in the antiferromagnetic and cyclic
phase of spin-2 condensate, the fullUð1Þ � SOð3Þ symme-
try is preserved in the ground state configuration, except
for some specific values of the parameter [19].
Ground state structure.—Let us consider a system of a

homogenous spin-2 Bose gas with s-wave interaction. This
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system can be described by the following mean field free
energy:

Fðc Þ¼1

2

�
c0ðc yc Þ2þc1hfi2þc2

5
j�j2

�
��c yc ; (1)

where c ¼ ðc 2; c 1; c 0; c�1; c�2ÞT is the order parame-
ter of the system, c0, c1, and c2 are interaction strengths
related to the scattering length in different spin channels,
hfi ¼ c yfc is the mean value of the spin operator, and
� ¼ P

2
a¼�2ð�1Þac ac�a represents a single pair of iden-

tical spin-2 particles. The ground state configuration can be
determined by minimizing this free energy. There are
several distinct phases in this system [20,21]. We will
discuss these phases under zero magnetic field and analyze
the symmetry and low-lying excitation spectrum of each
phase. (I) Ferromagnetic phases: When c1 < 0 and c1 �
c2=20< 0, two kinds of ferromagnetic phases are ener-
getically favored. The corresponding ground state con-
figurations are given by c ¼ ffiffiffi

n
p

ei�ð1; 0; 0; 0; 0Þ or c ¼ffiffiffi
n

p
ei�ð0; 1; 0; 0; 0Þ, where n ¼ �=ðc0 þ 4c1Þ is the particle

density and � is an arbitrary global phase. It is obvious that
these ground states have a Uð1Þ symmetry which leads to
only one massless Goldstone mode. Therefore, two un-
coupled systems have a Uð1ÞNUð1Þ symmetry. This
symmetry will softly break into a Uð1Þ diagonal symmetry
when a weak coupling is applied. This pattern of symmetry
breaking corresponds to an Abelian Josephson effect. The
low-lying excitation spectrum of this state has been derived

as !k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�kð�k þ 2g4nÞ

p
[20], where �k ¼ k2 and g4 ¼

c0 þ 4c1. We should note that this Goldstone mode will
break into two modes when coupling is applied: one zero
energy mode and one pseudo Goldstone mode. This
pseudo Goldstone mode has a finite but small gap and
leads to a density mode fluctuation in dc Josephson current.
(II) Antiferromagnetic phase: In the absence of magnetic
field, there is only one kind of antiferromagnetic phase
when c2 < 0 and c1 � c2=20> 0 are satisfied. The corre-
sponding ground state configuration is degenerate with
respect to five continuous variables which lead to five
massless Goldstone modes [21]. Four of them correspond
to the Uð1Þ � SOð3Þ symmetry of the free energy. The
extra degeneracy besides the Uð1Þ � SOð3Þ symmetry is
correct only on the mean field level and will be removed
when the quantum fluctuation is considered. In this Letter,
we will work on the mean field level and maintain all the
five Goldstone modes. The effect of quantum fluctuation
will be included in future work. (III) Cyclic phase: When
c1 > 0 and c2 > 0, the cyclic phase is energetically fa-

vored. The ground state configuration is given by c ¼ffiffiffi
n

p ðei�22 ; 0; e
i�0ffiffi
2

p ; 0; e
i��2

2 Þ where n ¼ �=c0 is the particle den-

sity and the global phase ��2 and �0 satisfy �2 þ ��2 �
2�0 ¼ � [21,22]. Using the Schwinger boson representa-
tion [19], one can see that the ground state of cyclic phase
is mapped to a tetrahedron on the unit sphere. Therefore,
the ground state of cyclic phase has a full Uð1Þ � SOð3Þ
degeneracy and leads to four Goldstone modes. We will

show that these modes also lead to non-Abelian Josephson
effect.
Non-Abelian Josephson effect.—We will analyze the

Josephson effect of a spin-2 BEC system in a double-
well optical trap, as shown in Fig. 1. We assume that the
energy barrier between the two wells is strong enough so
that the coupling between the Bose gas in each well is very
weak and the overlap of the ground state wave functions in
left and right well [which we denote as ’LðxÞ and ’RðxÞ]
can be safely neglected. We will also use the single mode
approximation which means we take the same mode func-
tion for all five spin components; this is a widely used
approximation and it is valid when the spin interaction is
symmetric. Under these assumptions, the system can be
described by the following potential:

Vcouple ¼ Fðc LÞ þ Fðc RÞ � Jðc y
Lc R þ c y

Rc LÞ; (2)

where c L and c R are the order parameter of the Bose
system in the left and right well, respectively, and J is the
coupling parameter. It should be noted that we have taken
the same chemical potential for the Bose gas in the right
and left well, because we will be interested in only the
dc Josephson effect which captures the essence of the non-
Abelian symmetry breaking as simple as possible. Using

the dynamic equations of the condensate i d
dt c aL ¼ �Vcouple

�c �
aL

and i d
dt c aR ¼ �Vcouple

�c �
aR

, we can derive the equation of mo-

tion of the Josephson current in each phase and analyze the
pseudo Goldstone modes. However, as we have mentioned
above, the symmetry of the ground state in ferromagnetic
phase only leads to an Abelian Josephson effect, which is
not of interest in the present Letter. Therefore, we will just
analyze the antiferromagnetic phase and cyclic phase
which are important realizations of non-Abelian
Josephson effect.
(I) Antiferromagnetic phase: To obtain the

pseudo Goldstone modes, we need to linearize the equa-

tion of motion around the ground state c L ¼ c R ¼
ð ffiffiffi

n
p

=
ffiffiffi
2

p Þð1; 0; 0; 0; 1Þ. By minimizing the potential Vcouple

under the above antiferromagnetic ground state, we get
n ¼ ð�þ JÞ=ðc0 þ c2=5Þ. With this ground state configu-

FIG. 1. The experimental schematic of a spin-2 Bose gas
trapped in a double well with chemical potentials �L of left
and �R of right trap, which initially satisfy �L ¼ �R. To drive
Josephson effect, we add a small distortion �� to �R.
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ration, we can obtain the linearized equations of the fluc-
tuations in this phase and analyze the excitation spectrum.

(i) The m ¼ 0 mode. The equation of motion of the
m ¼ 0 mode is given as

i
d

dt
�0L ¼

�
� c2

5
nþ J

�
�0L þ c2

5
n��

0L � J�0R; (3)

and a similar equation of �0R. Since this mode is
decoupled from others, it corresponds to an Abelian
Josephson current. By solving Eq. (3), we obtain the
eigenenergies of this mode, one is zero corresponding
to a massless Goldstone mode and the other is !0 ¼
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JðJ þ 2jc2jn

5 Þ
q

corresponding to a pseudo Goldstone

mode.
(ii) The m ¼ �1 coupled modes. The m ¼ �1 modes

are coupled in the following equations:

i
d

dt
�1L ¼

�
n

�
c1 � c2

5

�
þ J

�
�1L þ n

�
c1 � c2

5

�
��

�1L

� J�1R;

i
d

dt
��1L ¼

�
n

�
c1 � c2

5

�
þ J

�
��1L þ n

�
c1 � c2

5

�
��

1L

� J��1R; (4)

and a similar set of equations of ��1R. The solution
involves two pseudo Goldstone modes with the same gap

of !�1 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðc1 � c2

5 ÞJ þ J2
q

.

(iii) The m ¼ �2 coupled modes. The m ¼ �2
modes are coupled together in a set of equations similar
to the ones of the m ¼ �1 case. We will not list the
detailed equations of motion but just give the result
here and after. We obtain two pseudo Goldstone modes

with energy gap !ð1Þ
�2 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðc0 þ c2

5 ÞJ þ J2
q

and !ð2Þ
�2 ¼

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðc1 � c2

20ÞJ þ J2
q

. We can see that there are a total of

five pseudo Goldstone modes with four different gaps in
this phase which consists with our analysis of the ground
state degeneracy. In Fig. 2 we give the dependence of the
above frequencies on coupling parameter J. Recently, a
polar behavior has been observed in the F ¼ 2 ground state
of 87Rb condensate [23]. We expect that the above modes
of fluctuations can be observed in this system in future
experiments. In the case of the 87Rb system, the value of
interacting strengths under typical experimental conditions
are given as [23]: c1n: 0–10 nK, c2n: 0–0:2 nK, and c0n
about 150 nK. According to the weak coupling limit, we
assume that the coupling parameter J is much smaller than
the interaction energy of the condensate and given as about
0.1 nK. Under these conditions, we can obtain the frequen-
cies of the fluctuation related to the antiferromagnetic
phase, which is of order 100 Hz. The measurement of
fluctuations on this characteristic time scale (about
10 ms) is accessible in current experiments.

(II) Cyclic phase: Following the same procedure in
the antiferromagnetic phase we can obtain the
pseudo Goldstone modes for the cyclic phase.
(i) The m ¼ �2; 0 coupled modes. We find that each

Goldstone mode in the corresponding uncoupled system
[20] breaks into one massless mode and one
pseudo Goldstone mode. Since there are two Goldstone
modes in the uncoupled system, we find two

pseudo Goldstone modes with energy !ð1Þ
0;�2 ¼

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 þ c0nJ

p
and !ð2Þ

0;�2 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 þ 2c1nJ

p
.

(ii) The m ¼ �1 coupled modes. As we know, there are
two massless Goldstone modes with the same energy in
the uncoupled system [20]. By solving the equation of
motions for this mode, we find that each of them leads
to a pseudo Goldstone mode with a gap !�1 ¼
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 þ 2c1nJ

p
. There are four pseudo Goldstone modes

in the cyclic phase which is consistent with our previous
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FIG. 2 (color online). The frequencies of the pseudo Goldstone
modes as a function of coupling parameter J in the case of
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analysis on the symmetry of this phase. These kinds of
fluctuations in cyclic phase are expected to be realized in a
condensate of 85Rb atoms [21]. Based on the current
estimates of scattering lengths, the value of interacting
strengths under typical experimental condition is given
as: c1n: 0–20 nK, c2n: 0–0:6 nK, and c0n about 600 nK.
Under these conditions, we can also estimate the dc
Josephson frequencies in cyclic phase, which is about
100–300 Hz. The dependence of the above frequencies
on coupling parameter J is shown in Fig. 3.

Experimental signatures of Non-Abelian Josephson ef-
fect.—The experimental setup of a spin-2 Bose gas trapped
in a double well is illustrated in Fig. 1. The dc non-Abelian
Josephson current can be detected with the following steps.
The first step is to initiate a density oscillation in the
system. This can be realized by slightly changing the depth
of one well, which will cause a small imbalance in chemi-
cal potential (�R ! �R þ ��) between the two wells, and
then tuning it back. The next step is to detect the time
dependence of the particle numbers in different spin com-
ponent. Such kind of detection can be realized by first
spatially separating different spin components with a
Stern-Gerlach method during time of flight after switching
off the trapping potential. Then, the number of atoms in
each spin component will be related to the respective
spatial density distributions which can be evaluated by
the absorption imaging method. Following the above steps,
one can measure the density oscillation in each of the spin
components which are coupled together due to the non-
Abelian symmetry of the system. The measurement on the
dependence of the oscillation frequencies on J can be
realized by varying the barrier between the two wells and
repeating the above measurement.

In mean field theory, the condensates of 87Rb atom in
F ¼ 2 state are predicted to be polar (c1 � c2=20> 0 and
c2 < 0), but close to the border to cyclic phase (c1 > 0 and
c2 > 0) [21]. Furthermore, polar behavior in the F ¼ 2
ground state of 87Rb condensate has been observed in
recent experiment [23]. As a result, we expect that the
pseudo Goldstone modes of the antiferromagnetic phase
could be observed in experiments. As we have mentioned,
the value of interacting strengths under typical experi-
mental conditions are given as [23]: c1n: 0–10 nK,
c2n: 0–0:2 nK, and c0n about 150 nK, which leads to the
fluctuation time scale of about 10 ms in this system. On this
time scale, the measurement we proposed above is com-
pletely accessible within recent experimental technique in
F ¼ 2 spinor Bose-Einstein condensates of 87Rb system
[23,24]. In order to observe this dynamical oscillation
clearly in experiment, the temperature should be lower
than the gap of the pseudo Goldstone modes, which is
about 1–10 nk. Although there is still no such kind of
measurement performed in a system with cyclic phase,
we expect that it will be realized in a condensate of 85Rb
atoms in the near future [21].

In summary, we reveal a novel Josephson effect in spin-2
Bose system which involves non-Abelian symmetry and

propose an experimental protocol to realize the so-called
non-Abelian Josephson effect in this system. We find that
the frequencies of pseudo Goldstone modes do not only
relate to the coupling parameter but also to the interacting
strengths, which is a nonlinear effect due to the spin
dependent interaction. Our results are of particular signifi-
cance for exploring the new features of the non-Abelian
Josephson effect which are very distinct from the Abelian
case.
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