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We study theoretically the exchange of angular momentum between electromagnetic and electrostatic

waves in a plasma, due to the stimulated Raman and Brillouin backscattering processes. Angular

momentum states for plasmon and phonon fields are introduced for the first time. We demonstrate that

these states can be excited by nonlinear wave mixing, associated with the scattering processes. This could

be relevant for plasma diagnostics, both in laboratory and in space. Nonlinearly coupled paraxial

equations and instability growth rates are derived.
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It is well known that the angular momentum of electro-
magnetic radiation contains two distinct parts, one associ-
ated with its polarization state, or photon spin, the other
being the external or orbital photon angular momentum
(OAM). With the advent of laser beams, an increasing
interest is being given to the study of photon OAM, and
various optical experimental configurations have been con-
sidered [1–4]. It is now well understood that collimated
electromagnetic beams, such as laser or radio wave beams,
can be described by Laguerre-Gaussian functions, which
provide a natural orthonormal basis for a generic beam
representation. Utilization of photon OAM states in the low
frequency ( � GHz) radio wave domain was also recently
proposed in Ref. [5], as a new method for studying and
characterizing radio sources in astrophysics.

The possibility of remote study of space plasma vorticity
by measuring the OAM of radio beams interacting with
vortical plasmas was pointed out in Ref. [6], and a more
detailed theoretical analysis was given recently by study-
ing the electromagnetic wave scattering from the plasma
medium, with the associated OAM exchanges between the
plasma and probing photon beams [7]. A more speculative
work was also recently published where the strong sim-
ilarities between photon and neutrino dispersion relations
were explored, and OAM states of neutrino beams inter-
acting with dense plasmas were considered [8].

Here, we consider the important problem of stimulated
Raman and Brillouin backscattering of collimated electro-
magnetic beams with finite OAM in a plasma. This also
leads us to consider, to our knowledge for the first time, the
possible existence of plasmon and phonon states with finite
orbital angular momentum. Raman and Brillouin scatter-
ing instabilities are well known in the context of laser
fusion [9], as possible sources of anomalous plasma reflec-

tivity. Raman backscattering is now recognized as a domi-
nant process for ultraintense laser plasma interactions, in
the context of inertial fusion research [10]. In all these
studies, angular momentum in general, and photon OAM
in particular, have been systematically ignored. On the
other hand, there seems to be experimental evidence of
OAM dependence in Brillouin scattering of radio waves in
the ionosphere [11], which awaits a deeper theoretical
understanding.
In contrast with the traditional theoretical approach [9],

we consider the case of an electromagnetic pump beam
with finite transverse dimension, and arbitrary OAM states
are considered. Our formalism is quite simple but general,
and includes the nonlinear coupling between incident and
backscattered waves with electron plasma waves (for the
Raman instability) or ion acoustic waves (for the Brillouin
scattering). Nonlinear paraxial equations for the electro-
magnetic wave modes will be coupled to paraxial equa-
tions for the electrostatic wave modes. These later
equations will allow us to introduce the angular momentum
states for both plasmons and phonons. Notice that the spin
effects are absent for the electrostatic oscillations, which
means that (in contrast with the photon case) their OAM
coincides with their total angular momentum.
In the following, instability growth rates for generic

OAM states of the incident or collimated pump beams
will be determined, for an infinite and homogeneous
plasma. An important point to notice is that, even in the
infinite plasma, our theoretical model will predict a well
localized backscattering instability, taking place at the
focal region of the incident beam.
In isotropic and homogeneous plasmas, where the ions

are assumed immobile, transverse and longitudinal wave
coupling can be described by the following wave equations
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where ~A � ~Að ~r; tÞ is the vector potential describing the
transverse electromagnetic waves, ~n the electron density
perturbations associated with the electrostatic waves, n0
the equilibrium electron density, !pe ¼ ðe2n0=�0mÞ1=2 is

the electron plasma frequency, �e and m are the electron
charge and mass, �0 the vacuum permittivity, c the speed of

light, and Se ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Te=m

p
the electron thermal velocity, for a

plasma with electron temperature Te.
We now assume wave propagation along the z direction,

by considering wave solutions of the form ~A ¼P
j¼1;2

~Aj expðikjz� i!jtÞ þ c:c:, where !j and kj are

the frequencies and wave numbers of the two electromag-
netic wave modes (the incident and the scattered one).
Similarly, we can use for the electrostatic oscillations ~n ¼
~n0 expðik0z� i!0tÞ þ c:c:We assume that the wave ampli-

tudes ~Aj and ~n0 are slowly varying on space and time scales

much longer than the respective wavelengths and periods.
Using such an assumption, we can reduce the wave Eqs. (1)
and (2) to three coupled equations of the form

D1
~A1 ¼ !2

peð~n0=n0Þ ~A2; D2
~A2 ¼ !2

peð~n�0=n0Þ ~A1

D0~n0 ¼ n0ðe2k02=2m2Þð ~A1 � ~A�
2Þ

(3)

where we have used the following operators

Dj ¼ c2ðr2
? þ 2ikj@=@zÞ þ 2i!j@=@t;

D0 ¼ S2eðr2
? þ 2ik0@=@zÞ þ 2i!0@=@t

(4)

for j ¼ 1, 2, we have assumed the energy and momentum
conservation relations !1 ¼ !2 þ!0 and k1 ¼ k2 þ k0,
and the linear dispersion relations are satisfied, for the
transverse and electrostatic modes, k2jc

2 ¼ ð!2
j �!2

peÞ,
and k02S2e ¼ ð!02 �!2

peÞ, respectively. We should keep

in mind that !0 ’ !pe, and consequently the incident

wave frequency is larger than twice this value, !1 �
2!pe. It is known that, in order to make all these conditions

compatible with each other, we have to assume that the two
electromagnetic wave modes propagate in opposite direc-
tions, with k1 > 0 for the incident wave, and k2 ¼ �jk2j<
0 for the backscattered wave, with k0 > 0 for the electro-
static wave. Let us first discuss Eqs. (3) in the linear
approximation, where the coupling terms on the right-
hand side are neglected. The temporal dependence of the

amplitudes ~Aj and ~n0 will vanish, and these linear equa-

tions will reduce to pure paraxial equations, taking the
form

�
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�
~n0 ¼ 0: (5)

Using cylindrical coordinates ~r � ðr; ’; zÞ, the paraxial
wave solutions for the first of these equations can be

written as linear combinations of modes ~Ajð ~rÞ ¼
~Apj;ljðzÞFpj;ljðr; zÞeilj’, where Fpj;ljðr; zÞ are Laguerre-

Gaussian functions, with integers pj, lj representing the

radial and azimuthal (quantum) numbers, as defined by

Fpj;ljðr; zÞ ¼
1

2
ffiffiffiffi
�

p
�ðlj þ pjÞ!

pj!

�
1=2

x
jljj
j L
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ðxjÞ (6)

where wj � wjðzÞ are the beam waists of the two electro-

magnetic wave modes, j ¼ 1, 2, xj ¼ ðr=wjÞ2, and Ll
pðxÞ

are associated Laguerre polynomials. Because of the well-
known orthogonality relations of the Laguerre-Gaussian

modes, we can write
R1
0 rdrFp1;l1ðr; zÞF�

p2;l2
ðr; zÞ�R

2�
0 d’eiðl1�l2Þ’ ¼ �p1;p2

�l1;l2 , where the deltas represent

Kronecker symbols. It is also known that these solutions of

the vector potential ~Aj correspond to well defined photon

orbital angular momentum states, characterized by the
azimuthal quantum numbers lj. Similarly, we can say

that the ~n0 solutions correspond to a superposition of
plasmon angular momentum states, characterized by the
radial and azimuthal quantum numbers p0, l0, of the form

Fp0;l0 ðr; zÞeil0’. The beam waist w0 � w0ðzÞ of the corre-

sponding plasmon modes is considered here to be of the
same order as the beam waist of the dominant electromag-
netic wave mode, w0 ’ w1. Notice however that the elec-
trostatic waves carry no intrinsic angular momentum
because in contrast to the transverse photons, plasmons
have spin zero. This means that the plasmon angular
momentum states coincide with their total angular momen-
tum states. The electric field perturbations associated with
these plasmon states will remain purely electrostatic, if

they satisfy ~r� ~E ¼ ~0. For solutions of the form ~Eð~r; tÞ ¼
~EðrÞ expðil0’þ ik0z� i!0tÞ, this will imply the existence
of angular and radial field components such that E’ ¼
l0Ez=kr, and Er ¼ �idEz=k

0dr, where Ez is the axial field
component. The same will be true for the electron mean

velocity ~v ¼ �ið�0!0=en0Þ ~E. In the present calculations,
we only need to use the explicit form for the electron den-
sity fluctuations ~n0, as described by the paraxial Eq. (5).
The corresponding solution can be described as a superpo-
sition of orthogonal LG modes

~n 0ð ~r; tÞ ¼ ~np0;l0 ðzÞFp0;l0 ðr; zÞeil0’eik0z�i!0t ~ez þ c:c: (7)

These plasmon modes can then take quite unusual shapes,
as illustrated in Fig. 1. Going back to the coupled nonlinear
Eqs. (3), we can see that they describe an exchange of
energy, linear momentum, as well as orbital angular mo-
mentum, between the two electromagnetic waves and the
longitudinal waves. Replacing the linear solutions (with
amplitudes now depending on time) in these equations, and

PRL 102, 185005 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending
8 MAY 2009

185005-2



integrating over the radial variable r, we arrive at the
following nonlinear coupled equations

@ ~a1=@t ¼ �iC1n
0 ~a2; @ ~a�2=@t ¼ iC2n

0 ~a�1
@n0=@t ¼ �iC0ð ~a1 � ~a�2Þ

(8)

with the nonlinear coupling coefficients

Cj ¼ �
e2R

�0!jm
; C0 ¼ �

2

n0e
2

m2

k02

!0 R: (9)

We have also used the simplified notation ~aj ¼ ~Apj;ljðz; tÞ
and n0 ¼ ~np0;l0 ðz; tÞ and introduced the quantity R �
RðzÞ ¼ R1

0 Fp1;l1Fp2;l2Fp0;l0rdr. In order to understand the

physical meaning of these coupled equations for the
Laguerre-Gaussian modes, let us consider the important
case of stimulated Raman scattering, by considering an
intense incident wave with amplitude a1, and by using the
parametric approximation @a1=@t ’ 0. We also assume
maximum coupling conditions, corresponding to parallel
polarization ~a1 k ~a2. From the two remaining equations,
we can then easily derive

@2n0

@t2
¼ �2n0; � ¼ !pe

�ek0

m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2!0!2

p ja1jR: (10)

This leads to the following unstable solutions n0ðz; tÞ ¼
n0ðz; 0Þ expð�tÞ and a2ðz; tÞ ¼ a2ðz; 0Þ expð�tÞ, with
growth rate �. They show that the incident wave with
amplitude a1 can excite electron plasma waves, or plas-
mons, with different angular momentum states. In the case
of plasmons carrying no angular momentum, the back-
scattered wave will be in a state l2 ¼ �l1. The observation
of a backscattered signal with l2 � �l1 will therefore
reveal the existence of plasmons with nonzero angular
momentum states propagating in the medium. Raman
backscattering can then be used as a powerful diagnostic
method to detect internal plasma vorticity. Let us now

consider the interesting situation where well-defined plas-
mon angular momentum states can be excited from the
outside. This can be done by using two counterpropagating
electromagnetic waves. Going back to Eqs. (8), we can
determine the amplitude of the excited plasmon state, as a
function of the initial backscattered wave signal a2ðz; 0Þ.
Again, we assume ja1j � ja2j and use the parametric
approximation. Equations (8), for parallel polarization,
can then be reduced to

@a�2
@t

¼ iC2n
0a�1e�i�!t;

@n0

@t
¼ �iC0a1a�2ei�!t: (11)

Here, we have introduced a finite frequency mismatch
�! ¼ !1 �!2 �!0 because the two electromagnetic
wave modes imposed from the outside are not necessarily
in the optimum matching conditions. We can then derive

@2n0

@t2
¼ �2n0 þ i�!ei�!t @n

0

@t
(12)

again with �2 ¼ C0C2ja1j2R2. For initial conditions such
that n0ðz; 0Þ ¼ 0 and a2ðz; 0Þ is arbitrary (but still obeying
the linear paraxial solution along z), we can write the
solution of these equations in the form

a2ðz; tÞ ¼ a2ðz; 0Þ coshðgtÞei�!t=2 (13)

with g ¼ ½�2 � ð�!=2Þ2	1=2, and

n0ðz; tÞ ¼ �i
C0a1
g

a2ðz; 0Þ sinhðgtÞei�!t=2: (14)

These solutions describe the growth of the backscattered
signal with orbital angular momentum state l2, and the
excitation of a plasmon angular momentum state charac-
terized by the azimuthal number l0 ¼ l1 � l2. Notice that
the above growth rates depend on the axial position z. This
means that, very soon, the axial profile of both the excited
backscattered and electrostatic modes will deviate from its
linear solution, as illustrated in Fig. 2. However, the radial
beam profile will remain unchanged.

FIG. 2. Normalized amplitude of the plasmon mode excited
across the laser focal region, for three different times.

|n(x,y)|

x

y

FIG. 1 (color online). Amplitude of the electron density fluc-
tuations associated with plasmon states of finite (orbital) angular
momentum, for l0 ¼ 1 and p0 ¼ 0, in arbitrary units.
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Stimulated Brillouin scattering with orbital angular mo-
mentum can be treated in a similar ground. In this case, the
nonlinear plasmon Eq. (2) is replaced by the nonlinear
equation

�
@2

@t2
� v2

sr2

�
~n ¼ Zn0e

2

mM
r2A2 (15)

where ~n now represents the electron density oscillations

associated with the ion acoustic waves, vs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZTe=M

p
is

the ion acoustic velocity, and Ze and M are the ion charge
and mass. Following the same procedure, and assuming
that ~n ¼ ~n0 expðik0z� i!0tÞ þ c:c:, we can arrive at the
nonlinear paraxial equation for the ion acoustic wave
amplitude

D0~n0 ¼ Zn0e
2k02

mM
ð ~A1 � ~A�

2Þ (16)

where the differential operator is the same as before, but
with the electron thermal velocity Se replaced by the ion
acoustic velocity vs, and with the parallel wave number k0
satisfying now the ion acoustic dispersion relation k0vs ¼
!0. In the linear approximation, we recover the electro-
static paraxial equation, similar to the second of Eqs. (5).
This shows that angular momentum states for ion acoustic
waves, formally identical to those of plasmons, can be

defined such that ~n0ð ~rÞ ¼ n0Fp0;l0 ðr; zÞeil0’, with n0 ¼
~np0;l0 ðz; tÞ. Inserting these linear solutions, in the nonlinear

paraxial Eq. (15), we get for the time dependent ion
acoustic wave amplitude

@n0

@t
¼ �iCBa1a

�
2; CB ¼ �

Zn0e
2

mM

k0

vs

R: (17)

This leads to stimulated Brillouin backscattering solutions,
with a growth rate �s, determined by �2

s ¼ CBC2ja1j2. All
the qualitative features discussed above for the Raman
backscattering case can be repeated here. In particular,
the use of electromagnetic wave scattering as a diagnostic
probe of internal plasma vorticity, and the excitation of
well-defined angular momentum states of the phonon spec-
trum by two counterpropagating electromagnetic waves.

In this Letter, we have considered stimulated Raman and
Brillouin backscattering of electromagnetic waves in a
plasma with photon orbital angular momentum. We have
also introduced, to our knowledge for the first time, the
related concepts of plasmon and phonon angular momen-
tum states. The field modes associated with these electro-
static wave modes are determined by solutions of appro-
priate paraxial equations, similar to those describing colli-
mated electromagnetic wave beams near the focal region.
In the case of these electrostatic quasiparticles, the orbital
angular momentum coincides with the total angular mo-
mentum because, in contrast to photons, plasmons and
phonons have no spin.

We have discussed the nonlinear coupling between in-
cident and backscattered radiation in uniform plasmas, and

derived the corresponding growth rates, in the parametric
approximation. These results generalize the well known
results of stimulated Raman and Brillouin scattering, by
including the finite size and radial profile of the wave
modes, corresponding to the various orbital angular mo-
mentum states. We have shown that an additional selection
rule for nonlinear wave interaction, associated with the
conservation of angular momentum, was added to the usual
energy and linear momentum selection rules. In particular,
we have shown that, by using two counterpropagating
electromagnetic waves with well-defined orbital angular
momentum, we can excite specific states of nonzero plas-
mon and phonon angular momentum. Experimental veri-
fication of our theoretical model could lead to a novel
result on basic plasma physics, to be considered in the
future.
In this Letter, we have only considered three wave

coupling processes. But the present formalism can easily
be extended to four wave coupling, which could be par-
ticularly interesting for the case of Brillouin scattering.
Notice that, although the present model only applies to
uniform plasmas, the unstable region where stimulated
scattering takes place is highly localized, first because of
the finite transverse width of the electromagnetic beams,
and second because of the enhancement of the instability
growth rate in the axial direction, over a distance eventu-
ally much shorter than the Rayleigh length.
The Swedish author (B. T.) gratefully acknowledges the

financial support from the Swedish Research Council
(VR).

*titomend@ist.utl.pt
†Also at LOIS Space Centre, Växjö University, SE-351 95
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