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It is shown that resonant magnetic perturbations generate sheared flow velocities in magnetized

plasmas. Stochastic magnetic fields in incomplete chaos influence the drift motion of electrons and

ions differently. Using a fast mapping technique, it is demonstrated that a radial electric field is generated

due to the different behavior of passing particles (electrons and ions) in tokamak geometry; magnetic

trapping of ions is neglected. Radial profiles of the polodial velocity resulting from the force balance in the

presence of a strong toroidal magnetic field are obtained. Scaling laws for plasma losses and the forms of

sheared plasma rotation profiles are discussed.
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Particle and heat transport in stochastic media are cen-
tral topics of theoretical and experimental research, espe-
cially in plasma astrophysics and nuclear fusion. A variety
of problems, such as low-energy cosmic ray penetration
into the heliosphere, the propagation of galactic cosmic
rays in and out of the interstellar magnetic field, turbulent
transport in tokamaks, anomalous escape rates of runaways
in the atmosphere, and so on, are directly related to charged
particle motion in fluctuating fields [1–4]. The interest of
plasma physics, especially of nuclear fusion research, in
stochastic transport [5–7] recently further increased due to
the experimentally realized possibility of generating con-
trolled magnetic fluctuation spectra by external sources.
Perturbation coils have been installed in the tokamaks
Tore-Supra, TEXTOR, DIII-D, and JET [8,9]. It turned
out that the so-called ergodic divertor coils have significant
influences on several important plasma phenomena, such
as edge localized modes (ELMs) [10], the impurity pinch
from a ratchet process [11], and the topology of heat flow
patterns [12,13]. The experimental as well as theoretical
research on fluctuation-induced transport thereby entered a
new stage, with new understanding of basic aspects and
auspicious applications. Among the latter certainly is the
control of edge plasmas up to the substantial ELM mitiga-
tion [14,15] with application to ITER.

In this Letter we discuss the generation of sheared
plasma flows by resonant magnetic perturbations
(RMPs). Zonal flows are prominent examples of flow
generation by nonlinearities in plasmas. In stochastic mag-
netic fields, built-in ambipolarity of regular fields in toka-
maks is destroyed, resulting in a radial electric field and
thus sheared flow velocities. Turbulent transport reduction
by zonal flows or E� B shear stabilization in magnetized
plasmas are known processes during the self-organization
of plasmas far from equilibrium [16,17]. The appearance
of transport barriers and the transition to high-confinement
modes [7] are fundamental consequences. The interesting
point in the present context is that a sheared plasma flow
may be generated by controllable magnetic fluctuations as

produced by ergodic divertor coils in tokamaks. This
should be understood as an amendatory effect to the
well-known neoclassical poloidal rotation; the latter is
discounted here due to the nonconsideration of magneti-
cally trapped ions and the disregarded collisions. In colli-
sionless plasmas with inhomogeneous magnetic fields,
particle orbits deviate from the magnetic field lines due
to drifts. The different escape rates of drifting electrons and
ions, respectively, from stochastic regions were considered
in Refs. [18,19]. Each species was investigated separately.
However, because of the different electric charges, space

charge induced electric fields ~E ¼ � ~r� are generated
when both species are simultaneously present. That has
not been analyzed so far. In incomplete magnetic chaos
electrons may feel, e.g., transport inhibiting cantori while
ions do not, and vice versa, depending on the strength of
the control parameter (current in the perturbation coils).
Thereby the magnitude of the radial electric space charge
fields becomes strongly space-dependent. Together with
the ambient (toroidal) magnetic field B, a significant E�
B velocity is created. The latter causes a poloidal plasma
rotation. For example, in the tokamak TEXTOR without
dynamic ergodic divertor (DED), the plasma at the edge
rotates in the electron diamagnetic drift (EDD) direction.
Here, we shall show that due to the generated space charge
fields in the presence of RMPs, the poloidal plasma rota-
tion spins up in the ion diamagnetic drift (IDD) direction
and a rotational shear is created. Experimental results
support this picture. In addition to toroidal rotation
[20,21], a modified poloidal plasma rotation was observed
in the presence of magnetic edge perturbations [22].
For a theoretical understanding of the interplay between

flows and RMPs we use, for demonstration, the stochastic
magnetic fields produced by the DED in TEXTOR. In
TEXTOR, the perturbation coils producing RMPs are situ-
ated at the high-field (inner) side of the torus. The pertur-
bation current I0 is alterable. Typical parameters used here
are toroidal magnetic field strength B0 ¼ 2:2 T, poloidal
plasma beta �pol � 3:92, plasma center Ra ¼ 1:75 m,
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plasma radius a ¼ 0:46 m, temperatures Te � Ti �
10 keV (as upper limits; we have checked that for tem-
peratures of order 1 keV one gets similar results), and
plasma density ne � ni � 2:8� 1019 m�3. First, we
keep the plasma current fixed at Ip ¼ 390 kA. The toroidal

component A’ of the magnetic vector potential is being

calculated exactly from the current distribution [9]; it is
directly proportional to I0 and, in Fourier representation at
a fixed radial position, its maximum value decays with the
poloidal mode numberm, i.e., A’ � I0b

m, where b < 1 is a

constant depending on radial position. At a fixed radial
position, the mode number of the confining magnetic field
varies asm� q� I�1

p , where q ¼ m=n is the safety factor.

In other words, for the perturbations the location of reso-
nance with a certain mode numberm (note, n ¼ n0 is more
or less fixed) varies with the strength of Ip.

The analysis starts from the drift Hamiltonian

H ¼ R

B0Ra

�
�A’ þ �

q
mc2

�
�2 � 1� 2

Ra�JR
mc2R

�
1=2

�
(1)

for each species with mass m and charge q. Here, � ¼
1þ ðEkin þ q�Þ=mc2, � is the gyrofrequency, and JR �
c2f½0:1ð�� 1Þ þ 1�2 � 1g=2�2R2

a. Equation (1) is equiva-
lent to Eq. (32) in Ref. [19], obtained by returning to
dimensional (physical) variables using Eqs. (1)–(3), (5),
and (26) of the same reference. The formulation ignores
magnetically trapped ions and collisions. In case of van-
ishing perturbations, intact electron drift surfaces approxi-
mately coincide with magnetic surfaces while drift
surfaces of copassing (� ¼ þ1) ions are shifted outwards,
i.e., to the low-field side, and drift surfaces of counter-
passing (� ¼ �1) ions are shifted inside. Instead of
solving the continuous Hamiltonian equations dR=d’ ¼
R@H=@z and dz=d’ ¼ �R@H=@R for each species, we
analyze the electron and ion motion simultaneously by
generalizing the fast drift mapping procedure [19] to in-
clude self-consistent electric fields. In general, the self-
consistency conditions should also take care of Ampere’s
law in addition to quasineutrality [23]. We neglect this
effect here because of the relative smallness of the
RMPs. To determine the scalar potential of the ambipolar
electric field, the fast mapping technique is combined with
an iterative procedure, the Picard iteration. First we pick a
random set of equally distributed initial values for elec-
trons and ions between the last closed drift surface
(LCDS), defined by the plasma radius a and the major
radius of the plasma center Ra, and some arbitrary inner
boundary (e.g., at a minor radius of 0.1 m). To ensure
quasineutrality we choose the same initial numbers of
electrons and ions. The numbers of test particles should
not be too small to guarantee reliable statistical evalu-
ations. Since we are mainly interested in the electric field
at the plasma edge, we spare the calculation of the interior.
Thereby we assume that the electric field vanishes in the
central plasma; there we have a zero average charge den-

sity. The particle energies are drawn from Maxwellian
distributions with the electron temperature Te and the ion
temperature Ti, respectively. Next we move the test parti-
cles, using the mapping. In the present simulation we
assume the particles as thermally distributed with a small
drift velocity associated with plasma current. Both the
electron as well as the ion ensemble consist of copassing
and counterpassing particles with respect to the plasma
current. After a reasonable number of iterations, statistical
independence from the detailed initial conditions occurs.
Different sets of initial conditions within the same set of
parameters lead to almost the same results. We make
Poincaré plots and determine the surface charge density
�ðr; �Þ in the Poincaré section (r; �). We renormalize the
charge density obtained with the chosen number of test
particles (e.g., initially 20 000 electrons and 20 000 ions) to
fixed, physically relevant initial particle number densities
ne and ni, respectively. The independence of the results
with respect to the chosen number of test particles has been
checked numerically by varying the number of test parti-
cles. Then we solve the two-dimensional Poisson equation
for the corresponding scalar potential. Note that any field
in the toroidal direction is neglected here due to the fast
motion of the particles along the field lines inside the torus.
In a next iterative step we start again with the same set of
initial conditions, but now the scalar potential is included
into the mapping. After the same number of iterations we
recalculate the charge density and the scalar potential. By
continuing this procedure we achieve a stationary solution
for the scalar potential, which corresponds to the self-
consistent electric field for the chosen parameter configu-
ration. The convergence of the iteration scheme has been
checked numerically.
Figure 1 shows the calculated poloidal plasma rotation

profiles at the plasma edge for various strengths of mag-
netic perturbations, realized by different DED perturbation
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FIG. 1. Poloidal rotation profiles for various DED perturbation
currents. Curve 1: Reference state I0 ¼ 0 kA; curve 2: I0 ¼
4 kA; curve 3: I0 ¼ 6:672 kA; curve 4.: I0 ¼ 8 kA;
curve 5: I0 ¼ 11 kA.
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currents. The velocity profiles are plotted against the major
radius (low-field side to the right). The LCDS is located at
a major radius of R ¼ 2:21 m. Deep inside the plasma
there is almost no radial electric field. About 10 cm inside
the LCDS all rotation profiles are almost identical and
there is still no poloidal rotation. At about 7 cm inside
the LCDS is the onset of the ergodic region for the per-
turbed case. Now, the detailed behavior is as follows: We
start from the reference case 1 without magnetic perturba-
tions (I0 ¼ 0). It shows a continuous increase of the po-
loidal rotation velocity in the EDD direction (positive
poloidal direction) with increasing major radius, up to
5 km=s at the LCDS. At about 5 cm inside the LCDS the
poloidal rotation profiles in the presence of stochastic
magnetic fields deviate from the reference state, depending
on the perturbation current. For small perturbation cur-
rents, up to approximately 4 kA, the poloidal rotation
velocity is even larger in the EDD direction; see curve 2
in Fig. 1. For bigger perturbations, the poloidal rotation
drops to zero and reverses. About I0 ¼ 6:672 kA is the
critical perturbation for a zero poloidal rotation at the
LCDS; curve 3. For larger perturbations (I0 ¼ 8 kA and
I0 ¼ 11 kA are designated by 4 and 5, respectively) the
poloidal plasma rotation is in the IDD direction.

The change of the poloidal plasma rotation can be under-
stood from the Poincaré sections for electrons and ions,
respectively. For the same number of initial positions the
Poincaré sections for electrons show that, within the ergo-
dic region, at I0 ¼ 4 kA the number of intersections of
electron drift orbits is significantly larger than in the I0 ¼
6:672 kA case. This indicates that, although the DED
creates already a wide stochastic area for I0 ¼ 4 kA, there
is still an almost intact electron drift surface (cantorus) at
the position of the electron LCDS. For larger currents the
electron drift surface gets more and more destroyed, which
leads to a significant increase in electron losses. For the
ions, because of their larger masses and thereby smaller
velocities, the drift surface at the position of the ion LCDS
is already broken at I0 ¼ 4 kA, allowing for a faster loss of
ions below I0 ¼ 6:672 kA. Thus, for small perturbations
(up to I0 � 4 kA) mainly ions are lost to the wall within
the perturbed plasma edge, the radial electric field gets
more negative, and the poloidal plasma rotation increases
in the EDD direction. That effect (at small perturbation
currents) depends on temperature; it is more pronounced at
large temperatures. When the electron LCDS breaks up,
the electron losses increase, and the poloidal rotation
drops. At about I0 ¼ 6:672 kA the average radial electric
field at the position of the LCDS vanishes, and the poloidal
rotation becomes zero. By further increasing the perturba-
tion, the poloidal rotation reverses and increases in the IDD
direction. So, when both LCDSs are broken, the electron
losses outbalance the ion losses. For large perturbations,
the electrons move to the wall much faster than the ions,
and a commensurate ambipolar potential appears.

To find the critical perturbation for the breakup of the
LCDSs for electrons and ions, respectively, we analyze the
escape rates. We start with N0 test particles (electrons or
ions) on an unperturbed drift surface, being equally dis-
tributed along the whole poloidal angle. Then we turn on
the perturbations and iterate until the particles hit the wall,
where they are eliminated. The calculation is stopped when
90% of the particles are lost.NðtÞ is the number of particles
in the system at time t. Thereby t corresponds directly to
the number of toroidal rotations given by the number of
iterations. In open systems, NðtÞ=N0 is called the escape
rate. The escape rate follows a universal kinetic decay law
typical for chaotic systems. We make an ansatz in classi-
cally diffusive form

NðtÞ ¼ N0ðN1 þ e��tÞ; (2)

where a small offset N1 resulting from test particles on
stable orbits within the ergodic region has been introduced.
Figure 2 shows the numerically determined exponent � for
electrons. The decay parameter scales quadratically with
the perturbation current in the form �� ðI0 � IcÞ2. We
have � ¼ 0 for I0 � Ic. Such a law exists for both electrons
and ions. Two conclusions can be drawn from this result.
First, the escape is diffusive in accordance with the quasi-
linear prediction of a quadratic dependence on the pertur-
bation [3]. Second, we can extrapolate the value of Ic for
electrons from the linear fit in Fig. 2. We find Ice � 3:7 kA
for electrons. The corresponding result for ions is Ici �
2:2 kA. These findings confirm the interpretation for a
qualitative change of the rotation profiles at I0 � 4 kA.
We finally varied the plasma current Ip which is in-

versely proportional to the safety factor qa at the LCDS.
When decreasing the edge safety factor in the perturbed
system, the resonances are shifted towards the wall and
subsequently are destroyed. Particle escape is directly
related to the last resonance at the edge of the ergodic
zone. At a certain point when an island chain is destroyed,

FIG. 2. Square root of the decay parameter � for electrons
dependent on the perturbation current I0. The dashed line shows
a linear fit curve for

ffiffiffiffi
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the next resonance becomes dominant. Previously domi-
nant resonances do not disappear completely. By calculat-
ing the poloidal rotation profiles for plasma currents Ip
between 330 and 450 kA, we find that, in principle, the
poloidal plasma rotations show similar qualitative behav-
iors as for Ip ¼ 390 kA. However, the necessary perturba-

tion current In for a zero poloidal rotation velocity at the
radial position of the LCDS changes with Ip. Quantitative

results are depicted in Fig. 3. For each plasma current the
poloidal rotation profile was calculated and the necessary
perturbation current In for a zero poloidal rotation velocity
was determined. The crosses in Fig. 3 mark typical values
In. We fitted the data by In ¼ Ae��Ip ; the numerical fitting
parameters are A ¼ 6614:8 kA and � ¼ 0:0177 kA�1.
From here we can conclude that the critical perturbations
for the breakup of the LCDSs for electrons and ions scale
in the same way. Less magnetic perturbations are needed to
destroy the LCDS for smaller edge safety factors. This can
be understood as follows. Reversal of the flow velocity
requires a certain perturbation strength. According to the
current and mode number dependencies of the vector
potential perturbations, the current for zero poloidal rota-

tion velocity at the LCDS then satisfies Inb
c=Ip � const,

when m � c=Ip, c > 0 is being used. Thus we find In �
b�c=Ip � Ae��Ip for b < 1. The good agreement of the
theoretical prediction with the fitting curve in Fig. 3 has
been checked numerically.

In summary, we have shown that RMPs strongly influ-
ence the electron and ion drift surfaces at the plasma edge.
The ambipolar particle dynamics leads to the generation of

radial electric fields and a corresponding sheared poloidal
plasma rotation.
This research has been performed in cooperation with
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FIG. 3. In for zero poloidal rotation velocity versus plasma
current Ip. The solid line is the exponential decay fitting curve

for the numerically determined crosses.
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