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We study the counterpart of Anderson localization in driven one-electron Rydberg atoms. By changing

the initial Rydberg state at fixed microwave frequency and interaction time, we numerically monitor the

crossover from Anderson localization to the photoeffect in the atomic ionization signal.
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Anderson localization [1,2] is the inhibition of quantum
transport due to destructive interference in disordered,
static quantum systems. When a Hamiltonian quantum
system is periodically driven and its classical counterpart
undergoes a transition to chaotic diffusion, an analogous
localization phenomenon occurs: destructive interference
between many chaotically diffusing trajectories inhibits
the transport and localizes the diffusing particle’s wave
function [3]. Since dynamical chaos rather than static
disorder establish Anderson’s scenario here, the phenome-
non is often labeled dynamical localization.

Until now, the dynamical variant of Anderson localiza-
tion (and similar phenomena [4]) was observed in a vast
range of physical systems—ranging from cold atoms [5] to
photon billiards [6] and atoms [7–10], and is best under-
stood in the Floquet or dressed state picture, which also
allows its formal mapping on Anderson’s model [11]. The
dressing of the bare system by the driving field photons
defines multiphoton transition amplitudes between the ini-
tial and the final field-free state, mediated by near-
resonantly coupled intermediate states. These amplitudes
need be summed up coherently to determine the total
transport probability. For destructive interference and
thus localization to emerge, a large number of amplitudes
is required, what implies that the photon energy be small
compared to the energy gap between initial and final state.
This is a scenario in perfect contrast to Einstein’s photo-
effect [12], which predicts efficient transport—mediated by
one single transition amplitude—for photon energies
larger than that energy gap, though the general physical
context of a driven quantum system is identical in both
cases. Recently, connecting both effects through continu-
ous variation of the experimental parameters has moved
into reach for state-of-the-art atomic physics experiments
[13], and it is the purpose of this Letter to (theoretically)
establish this connection and to spell out its characteristic
features.

Our specific atomic physics scenario is defined by a one-
electron Rydberg atom under periodic driving by a classi-
cal, linearly polarized oscillating electric field of amplitude
F and frequency !, described (in length gauge and atomic
units, employing the dipole approximation) by the

Hamiltonian

HðtÞ ¼ p2

2
� 1

r
þ F � r cosð!tÞ; (1)

with p and r the electron’s momentum and position, re-
spectively. In this system, quantum transport properties are
efficiently characterized by the ionization probability
PionðtÞ after a given atom-field interaction time t, for an
atomic initial state j�0i ¼ jn0; ‘0; m0i with well-defined
principal and angular momentum quantum numbers n0, ‘0,
and m0 (the latter one being a constant of motion for
linearly polarized driving). Transport occurs on the energy
axis, from the bound initial state towards asymptotically
free continuum states, and is mediated by the absorption of
at least
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photons by the electron from the driving field, where neff <
1 denotes the effective ionization threshold (at negative
energy �1=2n2eff). The latter is fixed by the specific ex-

perimental conditions and caused by unavoidable experi-
mental imperfections such as electric stray fields. A typical
value for state-of-the-art experiments is neff ’ 270
[10,13,14], which we will employ throughout the remain-
der of this Letter. Since, at a given laboratory driving field
frequency ! ¼ 2�� 17:5 GHz [13], all field-free bound
states with neff > n0 � 230 will be coupled directly to the
atomic continuum by one single photon, such an experi-
mental ionization threshold allows for the continuous in-
terpolation between the Anderson limit and the photoeffect
as described above. It suffices to monitor PionðtÞ as a
function of n0, with all other experimental parameters
fixed.
We will now model such a scan by a faithful numerical

description of the atomic system under study. Our theo-
retical or numerical tool box is described in detail else-
where [15,16]. We only recall here that the theoretical
approach combines Floquet theory [17] and complex dila-
tion of the Hamiltonian [18,19], possibly amended by
R-matrix theory to account for the multielectron core of
alkali Rydberg states [15], together with considerable
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computational power provided by parallel supercomputing
facilities. The production of one single data point as dis-
played in the figures below requires repeated diagonaliza-
tion of banded complex symmetric matrices of dimension
up to 106, which amounts to storage needs up to 150 GB.

In order to highlight the continuous transition from sup-
pressed transport due to Anderson localization to enhanced
transport due to the photoeffect, we scan an energy range
of atomic initial states from n0 ¼ 90 to n0 ¼ 245, at fixed
microwave frequency and atom-field interaction time t ¼
500 ns, and angular momentum quantum numbers ‘0 ¼ 1,
m0 ¼ 0. The specific choice of these parameters is inspired
by ongoing experiments [13] on Rydberg states of lithium,
and we will provide data for lithium as well as for atomic
hydrogen, to disentangle universal features of the said
transition from those characteristic of the atomic species
under scrutiny. Furthermore, our ‘‘starting value’’ n0 ¼ 90
guarantees that we start out in the Anderson regime, where
the ionization yield is characterized by a universal ioniza-
tion threshold irrespective of the atomic species [20].

Figure 1 shows the results of our calculation in terms of
the scaled ionization threshold field F10%

0 ¼ F10%n40, i.e.,
of the driving field amplitude F10%

0 which induces

PionðtÞ ¼ 0:1, measured in units of the Coulomb field
experienced by the electron on its unperturbed Rydberg
orbit n0 [21]. The threshold field is plotted as a function of
the scaled driving field frequency !0 ¼ !n30, i.e., of the
driving field frequency ! measured in units of the unper-
turbed Kepler frequency for n0. Clearly, we can identify
three regimes of qualitatively different behavior: In
regime (I), for low principal quantum numbers n0 ¼
90–170 (corresponding to scaled frequencies !0 ’
1:9–13:1), we witness the characteristic signature of
Anderson localization—the scaled ionization threshold in-
creases with the excitation of the initial atomic state, i.e.,
with decreasing ionization potential, and is essentially
independent of the atomic species [20]. In regime (II),
the ionization threshold still increases on average—sug-
gestive of Anderson localization—but is garnished by
large-scale modulations. Closer inspection of this oscillat-
ing structure reveals its origin in successive passages
through the multiphoton ionization thresholds indicated
by vertical arrows in the figure: The opening of a direct,
NV-photon ionization channel [22] is manifest in a local,
rapid decrease of F10%

0 with !0 (since the dominant con-

tribution to the ionization signal is of lower order). As !0

increases further on, the threshold field increases again,
since the cross section for NV-photon ionization decreases
with increasing frequency—until the next channel opens.
The thus emerging structures are precursors of the final
opening of the single photon ionization channel at n0 ¼
230 (!0 ¼ 32:4), which defines the demarcation line be-
tween regime (II) and the realm of the photoeffect,
regime (III) [23].
We therefore witness a synchronicity of Anderson local-

ization and (NV-order) photoeffect in regime (II): the
former still largely suppresses the ionization process,
even when, by virtue of the value of NV, multiphoton
transitions of very low order mediate the transport, while
the latter is already reflected in prominent nonmonotonic-
ities of the threshold field. Only in regime (III) is Anderson
localization completely absent.
A complementary analysis corroborates this interpreta-

tion. According to the theory of Anderson localization, the
exponential localization of the electronic wave function on
a characteristic scale � (in units of the driving field photon
energy @!) on the energy axis [24] implies an exponential
scaling of the ionization yield, according to Pion �
expð�2NV=�Þ. Consequently, for a fixed ionization yield
(as implicit in the definition of F10%

0 ), this leads to the

prediction that �ð!0; F
10%
0 Þ=NV be independent of !0.

This is what is observed in Fig. 2 in regime (I) (modulo
threshold fluctuations which are characteristic for the
Anderson problem [25]), where we plot �ð!0; F

10%
0 Þ=NV

vs !0, with � estimated according to [24]

� ’ 3:33F2
0!

�10=3
0 n20: (3)

This simple expression is known to be quantitatively in-
correct [10,16], but to provide a qualitatively reliable
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FIG. 1 (color online). Scaled ionization threshold field F10%
0 ¼

F10%n40 of atomic hydrogen [red dashed line (h)] and lithium

[blue solid line (�)], at fixed laboratory microwave frequency
! ¼ 17:5 GHz and interaction time t ¼ 500 ns. The scaled
frequency!0 ¼ !n30 ¼ 1:9–39:1 is tuned by changing the initial
state’s principal quantum number from n0 ¼ 90 to n0 ¼ 245, at
fixed values of the angular momentum quantum numbers ‘0 ¼ 1
and m0 ¼ 0. We observe three distinct regimes. (I), 1:9 � !0 �
13:1: the monotonous increase of F10%

0 with !0 is a character-

istic signature of Anderson localization in strongly driven quan-
tum systems [20]. Regime (II), 13:1 � !0 < 31:5: F10%

0 still

increases with !0, on average, but is garnished by large modu-
lations due to the passage of the atomic initial state across
subsequent NV-photon ionization thresholds indicated by verti-
cal arrows. Anderson localization and finite NV-photon ioniza-
tion coexist. Regime (III), !0 � 31:5: The photon energy
exceeds the ionization potential of the initial state, the
Anderson scenario is inapplicable, and single photon absorption
mediates the ionization process.
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characterization of the general trend of � with n0. Further-
more, Fig. 2 clearly spells out that exponential localization
of the electronic wave function on the energy axis prevails,
at least on average, even deeply into regime (II), where the
ionization behavior is simultaneously strongly affected by
the described opening of few-photon ionization channels.
In the Anderson picture, the latter is tantamount to finite
size effects which manifest in localization lengths � of
order unity, thus resolving the granularity of the lattice
(on the energy axis) along which transport occurs. In
regime (III), the lattice constant (i.e., here, the photon
energy [11,24]) is larger than the effective sample length,
and the Anderson picture turns inapplicable.

Let us finally analyze the characteristics of the atomic
transport process in terms of its ‘‘complexity,’’ which can
be characterized in terms of the number of Floquet eigen-
states which mediate the ionization process—which in turn
provides a measure of the volume of Hilbert space which is
effectively explored in the course of the ionization process.
A good estimate thereof is given by the Shannon width [26]

W ðF10%
0 ; !0Þ ¼ exp

�
�X

j

jwjj2 lnjwjj2
�
; (4)

which raises the Shannon entropy of the decomposition
j�0i ¼

P
jwjj�ji of the atomic initial state in the Floquet

basis fj�jig, with individual weights jwjj2 [25], to the

number of Floquet states which effectively contribute.
According to our qualitative understanding of Anderson
localization on the one hand and the photoeffect on the

other, the former is the consequence of the destructive
interference of a large number of multiphoton transition
amplitudes, while the latter is mediated by essentially one
single transition matrix element. Consequently, Anderson
localization implies the coupling of a large number of
states, and this is tantamount to the spreading of the
field-free atomic initial state over a large number of atomic
eigenstates in the field, whereas in the photoeffect the
atomic initial state is directly coupled to the continuum,
without the participation of other bound states. Corre-
spondingly, the Shannon width should be large in one
case and small, rather close to 1, in the other. Figure 3
confirms this expectation: As a function of !0, at fixed
laboratory value !, the Shannon width exhibits large val-
ues in regime (I), and decreases almost monotonically to a
level close to unity in regime (III), with intermediate values
around approximately 20 in regime (II). Much as in our
previous analysis of the ionization threshold’s and the
localization length’s dependence on the scaled frequency,
it is also here evident that the interference of multiple
transition amplitudes as the fundamental mechanism of
Anderson localization prevails very far into regime (II),
even in the presence of already relatively efficient direct
continuum coupling through few-photon ionization chan-
nels. The relatively high level ofW ’ 20 even at !0 ’ 30
convincingly demonstrates the rapid proliferation of multi-
photon coupling amplitudes as the photon energy becomes
smaller than the initial state’s ionization potential. In terms
of the Anderson model, even small lattices suffice for the
emergence of Anderson-like suppression of diffusive
transport.
Figure 3 also highlights some subtle differences of the

ionization process for different atomic species–here, lith-
ium and atomic hydrogen: In regime (I),W is significantly
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FIG. 3 (color online). Shannon width, Eq. (4), at the 10%-
ionization threshold, as a function of the scaled frequency !0 ¼
!n30, for the same parameters as in Fig. 1. Remarkably,W takes

appreciable values for initial states up to right below the single
photon ionization threshold at the lower edge of regime (III). In
regime (I), atomic hydrogen exhibits considerably larger values
than lithium, which we attribute to the angular momentum
degeneracy of the hydrogenic initial state.
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FIG. 2 (color online). Ratio of the atomic localization length �
as estimated by Eq. (2) to the number of absorbed photons NV,
versus scaled frequency !0 ¼ !n30. Data are extracted from the

10%-ionization thresholds of Fig. 1, for atomic hydrogen [red
dashed line (h)] and lithium [blue solid line (�)]. On average,
�=NV is constant in regime (I)—a hallmark of exponential
localization of the electronic wave function on the energy axis.
This is still true in regime (II), where, however, the discreteness
of the lattice (on the energy axis) strongly affects the transport
behavior: Large-scale modulations of the signal emerge due to
direct NV photon transitions to the continuum. Only in re-
gime (III) does � drop to zero, thus invalidating the Anderson
picture.
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larger for hydrogen than for lithium, which we attribute to
the higher degeneracy of the hydrogen atom’s initial state’s
angular momentum manifold as compared to the nonhy-
drogenic initial state of lithium (m0 ¼ 0 renders ‘ ¼ 0
directly accessible by single photon absorption from
‘0 ¼ 1) [27]. The progressive vanishing of this discrep-
ancy in regime (II) is consistent with the reduction of NV.

In summary, we established a continuous transition from
Anderson localized quantum transport to the photoeffect,
by simple tuning of the sample length at fixed lattice
constant, which, in our specific, experimentally relevant
example from atomic physics, is defined by the ionization
potential of the atomic initial state jn0; l0; m0i and the
energy @! of the injected photons, respectively. We have
seen that both transport mechanisms coexist in a certain
parameter range, where Anderson localization is garnished
by finite size effects, which, in an atomic physics language,
is nothing but the opening of multiphoton ionization chan-
nels. Our most remarkable observation is probably that
characteristic signatures of Anderson localization prevail
in the ionization signal even when absorption of very few
photons suffices to ionize the Rydberg electron: Thus,
quasirandomness as a necessary prerequisite of Anderson
localization is rapidly established, if only the local spectral
density permits the coupling of many unperturbed atomic
states by comparably few photons.
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Note added.—Recently, we learned that the predicted
ionization behavior in regime (II) was recently observed
experimentally [13].
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