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We present a continuous-variable quantum key distribution protocol combining a discrete modulation

and reverse reconciliation. This protocol is proven unconditionally secure and allows the distribution of

secret keys over long distances, thanks to a reverse reconciliation scheme efficient at very low signal-to-

noise ratio.
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The first practical application of quantum information
theory is certainly quantum key distribution (QKD) [1],
which allows two distant parties to communicate with
absolute privacy, even in the presence of an eavesdropper.
Two families of QKD protocols coexist today, relying
either on photon counting techniques or homodyne detec-
tion, which correspond to discrete and continuous-variable
protocols, respectively. The better efficiency of homodyne
detection over single photon counting at the telecom wave-
length has stimulated the study of continuous-variable
protocols in the last few years [2,3]. However, despite its
technological advantages, continuous-variable QKD
(CVQKD) is still not considered as a true alternative to
discrete QKD, mostly because it seems restricted only to
short distances. The main reason for that lies in the clas-
sical postprocessing of the data shared by Alice and Bob
who need to construct a key from continuous random
values, which is a task far more complicated than its
discrete counterpart.

In this Letter, we introduce a specific CVQKD scheme,
which exhibits two specific related advantages: first, it
allows us to simplify significantly both the modulation
scheme and the key extraction task, and second, it makes
it possible to distill secret keys over much longer distances.

Continuous-variable protocols have recently been
shown to be unconditionally secure, that is, secure against
arbitrary attacks [4]. In particular, collective attacks are
asymptotically optimal, meaning that the theoretical secret
key rate K obtained using one-way (reverse) reconciliation
is bounded below by:

K � Iðx:yÞ � Sðy:EÞ � Kth; (1)

where x, y represent the classical data of Alice and Bob,
and E is Eve’s quantum state. Here Iðx:yÞ refers to the
Shannon mutual information [5] between classical random
values x and y, and Sðy:EÞ is the quantum mutual informa-
tion [6] between y and the quantum state E. The reason for
using two different measures of information is that Eve has

no restriction on her capabilities (other than the ones
imposed by quantum mechanics), while Alice and Bob
must be able to extract a key with current technology.
This secret key rate is valid for reverse reconciliation [3]:
the final key is extracted from Bob’s data and Bob sends
some side information to Alice on the authenticated clas-
sical channel to help her correct her errors. In addition, one
should note that Kth corresponds to a scenario where Alice
and Bob could perform perfect error correction, which is
never the case in practice. For this reason, the key rate must
be modified in the following way [7,8]:

Kreal ¼ �Iðx:yÞ � Sðy:EÞ; (2)

where � is the so-called reconciliation efficiency. The term
�Iðx:yÞ simply corresponds to the amount of information
Alice and Bob have been able to extract through reconcili-
ation. The second term, Sðy:EÞ, is bounded from the cor-
relation between Alice and Bob’s data, using a Heisenberg-
type inequality.
Whereas the reconciliation efficiency is not usually

taken into account to estimate asymptotic bounds, we
must include it in our analysis because it is currently the
limiting factor for the range of CVQKD with Gaussian
modulation. In [8], it was argued that working at low
signal-to-noise ratio (SNR) increases the range of the pro-
tocol. Unfortunately, maintaining a good reconciliation
efficiency at very low SNR is even more difficult to
achieve. This point is exactly the limitation that the proto-
col presented in this Letter manages to overcome, hence
allowing QKD over longer distances.
This Letter is organized as follows: after detailing the

limitations of the Gaussian modulation, we present our
new four-state protocol as well as its unconditional security
proof. Then we describe the reconciliation step and show
that its efficiency remains remarkably high, even at very
low SNR. Finally, we show the expected performances of
the protocol and discuss some perspectives.
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Gaussian vs discrete modulation.—Most CVQKD pro-
tocols use a Gaussian modulation since it is the one max-
imizing the mutual information between Alice and Bob
over a Gaussian channel. In such a protocol, Alice draws
two random values qA, pA with a Gaussian distribution
N ð0; VAÞ and sends a coherent state jqA þ ipAi to Bob.
The main problem of this modulation arises when one
wants to perform QKD over long distances. In this case,
there are two possibilities to fight the noise induced by the
losses in the channel: either increase the variance of the
modulation so that the SNR remains reasonably high, or
work at low SNR. Unfortunately both approaches tend to
fail over a few tens of kilometers.

Working at high SNR requires us to achieve a very good
reconciliation efficiency, otherwise the secret key rate goes
to zero [7,8]. Capacity-achieving error correcting codes are
therefore required for this task. Unfortunately, even with
the best codes presently available, such as low-density
parity-check (LDPC) codes [9] or turbo codes [10], one
cannot expect to extend the range of the protocol well over
30 kilometers [7].

Working at low SNR relieves a little bit the need for
capacity-achieving codes, but reasonably good low-rate
codes are still hard to combine with the Gaussian modula-
tion. Some interesting algebraic properties of R8 can be
useful in this situation, and help with increasing the achiev-
able distance to over 50 kilometers [8].

At the present time both of these approaches seem to
have been pushed at their maximum using the state-of-the-
art channel coding techniques, and breaking this 50 kilo-
meters limit seems unlikely with a Gaussian modulation.

One should emphasize the following point: while a
Gaussian modulation performs much better than a binary
modulation at high SNR (simply because a binary modu-
lation cannot send more than one bit of information per
signal), it is not the case for low SNR. Adding to this fact
that a binary modulation allows for a much better recon-
ciliation efficiency at low SNR, we infer that the modula-
tion required to achieve long distances is not Gaussian.
Examples of binary (or quaternary depending on the num-
ber of quadratures considered) modulation have been pro-
posed in the past [11,12], but were often combined with a
postselection procedure [13], and are not known to be
unconditionally secure.

The four-state protocol.—The protocol we propose runs
as follows. Alice sends randomly one of the four coherent

states: j�eið2kþ1Þ�=4i with k 2 f0; 1; 2; 3g. The amplitude �
(taken as a real number) is chosen so as to maximize the
secret key rate one can expect from the expected experi-
mental parameters (transmission of the line and excess
noise). Bob measures randomly one of the quadratures in
the case of the homodyne protocol [14] and gets the result
y. The sign of y encodes the bit of the raw key while Bob
reveals the absolute value jyj to Alice through the classical
authenticated (but not secure) channel. At this point, Alice
and Bob share correlated strings of bits. In order to help

Alice correct her data, Bob sends some side information
over the classical channel, typically the syndrome of his
string relative to a binary code they agreed on beforehand.
From a classical communication perspective, the error
correction (reconciliation) is then a problem of channel
coding for the so-called BIAWGN channel, where a binary
modulation is sent over an Additive White Gaussian Noise
channel, and for which there exist very good codes, even
for extremely low SNR.
The present protocol can thus be seen as a hybrid

between the Gaussian modulation protocol, with which it
shares the physical implementation as well as the security
proofs based on the optimality of Gaussian states, and
protocols combining a discrete modulation with postselec-
tion, for which the error correction is substantially easier to
perform, but whose unconditional security has not yet been
established.
Let us now prove that the four-state protocol is un-

conditionally secure. First, it is enough to prove the se-
curity against collective attacks as they are the most power-
ful attacks in the asymptotic limit [4]. Then, as usual,
the security is established by considering the equiva-
lent entanglement-based version of the protocol. The state
sent to Bob in the prepare and measure scheme is a mix-
ture of four coherent states: � ¼ 1

4

P
3
k¼0 j�kih�kj with

�k ¼ � expðið2kþ 1Þ�=4Þ. The entanglement-based ver-
sion uses a purification j�i of this state such that:
� ¼ trAðj�ih�jÞ. This state � can be diagonalized as

�¼�0j�0ih�0jþ�1j�1ih�1jþ�2j�2ih�2jþ�3j�3ih�3j
where �0;2 ¼ 1

2 e
��2½coshð�2Þ � cosð�2Þ�, �1;3 ¼

1
2 e

��2½sinhð�2Þ � sinð�2Þ� and

j�ki ¼ e��2=2ffiffiffiffiffiffi
�k

p X1
n¼0

�4nþkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið4nþ kÞ!p ð�1Þnj4nþ ki

for k 2 f0; 1; 2; 3g. Therefore, a particular purification
of � obtained by the Schmidt decomposition is j�i ¼P

3
k¼0

ffiffiffiffiffiffi
�k

p j�kij�ki which can be rewritten as j�i ¼
1
2

P
3
k¼0 jc kij�ki where the states

jc ki ¼ 1

2

X3
m¼0

e�ið1þ2kÞmð�=4Þj�mi

are orthogonal non-Gaussian states.
The entanglement-based version of the four-state proto-

col can be described as follows. Alice prepares the en-
tangled state j�i and performs the projective measurement
fjc 0ihc 0j; jc 1ihc 1j; jc 2ihc 2j; jc 3ihc 3jg on her half thus
preparing the coherent state j�ki when her measurement
gives the result k. This state is sent through the quantum
channel to Bob who measures either one of the quadratures
with a homodyne detection.
In order to prove the security of the protocol, we use the

fact that Sðy:EÞ, the Holevo information between Eve and
Bob’s classical variable, is maximized when then the state
�AB shared by Alice and Bob is Gaussian [15]. Therefore,
Sðy:EÞ can be bounded from above by a function of the
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covariance matrix � of �AB [7]. For a quantum channel
characterized by its transmission T and excess noise �, � is
given by:

� ¼ ðVA þ 1Þ12

ffiffiffiffi
T

p
Z�zffiffiffiffi

T
p

Z�z ðTVA þ 1þ T�Þ12

 !
;

where VA is the variance of Alice’s modulation in the
prepare and measure scheme. This covariance matrix has
the same form as in the Gaussian modulation scheme
where Z would be replaced by the correlation of a two-

mode squeezed vacuum ZEPR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
A þ 2VA

q
. The correla-

tion Z for the state j�i does not take such a simple
mathematical form but turns out to be almost equal to
ZEPR for small variances (see Fig. 1). Hence, for a suffi-
ciently low modulation variance, the bound on Sðy:EÞ is
almost identical to the one obtained for a Gaussian modu-
lation. However, the efficient reconciliation � available at
low SNR (see Fig. 1) allows us to extract more information,
and in fine, to distill a key in conditions where the Gaussian
modulation protocol is ineffective.

Realistic reconciliation.—The main advantage of a bi-
nary modulation compared to a Gaussian modulation is
that one can find binary codes allowing high reconciliation
efficiency, e.g., 80%, even with a SNR close to 0. This is
quite remarkable since all practical reconciliation schemes
for a Gaussian modulation [8,18] see their efficiency drop
to zero as the SNR becomes too low (see Fig. 1). In order to
achieve an efficient reconciliation at low SNR, one needs
good low-rate codes. These can be constructed rather
easily with a concatenation of a capacity-achieving code
and a repetition code that we describe now.

At the end of the quantum exchange, Alice and Bob
share two correlated vectors x ¼ ðx1; . . . ; xNÞ (with xi ¼
��=

ffiffiffi
2

p
) and y ¼ ðy1; . . . ; yNÞ. We will use the concate-

nation of a capacity-achieving code C of length m and a
repetition code of length k, assuming that N ¼ mk. Bob
starts by defining the vector Y ¼ ðY1; . . . ; YmÞ where Yi ¼
sgnðykði�1Þþ1Þ for i 2 f1; . . . ; mg. The goal of the reconcili-
ation is for Alice to be able to compute the vector Y. To do
this, Bob sends some side information: the vector
fjy1j; . . . ; jyNjg, the m vectors fð1; sgnðykði�1Þþ1 �
ykði�1Þþ2Þ; . . . ; sgnðykði�1Þþ1 � ykiÞg, and the syndrome of

Y for the code C. This scheme allows Alice and Bob to
extract m bits out of their N ¼ km data.

This repetition scheme is a simple way to build a good
code of rate R=k out of a code of rate R. This construction

is not optimal compared to using a very good error cor-
recting code at the considered signal-to-noise ratio but
exhibits some interesting features. First, designing very
good codes at low SNR is not easy, and has not been
intensively studied so far, mainly because the telecom
industry does not operate in this regime: this would not
be economical since an important number of physical
signals would be required to send one information bit.
The problem is very different in QKD, where quantum
noise is an advantage rather than a drawback. A second
advantage of this repetition scheme lies in its simplicity. As
we mentioned earlier, the main bottleneck of CVQKD is
the reconciliation: it was limiting both the range and the
rate of the protocol. In particular, the rate is limited by the
complexity of decoding LDPC codes, which is roughly
proportional to the size of the code considered (in fact
OðN logNÞ). If one uses a repetition scheme of parameter
k, then the length of the LDPC code becomes m ¼ N=k
allowing a speedup of a factor k. The speed of the recon-
ciliation is not proportional to the number of signals ex-
changed by Alice and Bob anymore, but to the mutual
information they share, which is a major improvement
for noisy channels, i.e., long distance. Finally, the penalty
in terms of reconciliation efficiency imposed by using this
scheme instead of a dedicated low-rate error correcting
code is actually quite small. Roughly speaking, a repetition
code of length k allows us to decode at a SNR k times
smaller. It is indeed easy to show that the efficiency
�Rðs=kÞ obtained at a SNR s=k with such a repetition
code is related to the efficiency �LDPCðsÞ available at

SNR s through �Rðs=kÞ ¼ log2ð1þsÞ
klog2ð1þs=kÞ�LDPCðsÞ, that is,

�Rðs=kÞ � ð1� s
2Þ�LDPCðsÞ when s is small enough. For

instance, there exist good LDPC codes of rate 1=10 decod-
ing at SNR 0.17 [19], meaning that �LDPCð0:17Þ � 88%
and 8k � 1, �Rð0:17k Þ � 80%. By using different codes,

one can have a reconciliation efficiency greater than 80%
for all SNRs below 1.
The reconciliation scheme presented above performs

indeed much better at low SNR (lower that 1) than recon-
ciliation schemes used for a Gaussian modulation. This
behavior is inverted for higher SNR as a binary modulation
is unable to send more that one bit per channel use. As a
consequence, the four-state protocol is particularly rele-
vant in a long distance scenario, whereas the Gaussian
modulation protocol is still better suited to distribute high
key rate at short distances.
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FIG. 1 (color online). Left: correlation
ZEPR of an EPR pair (solid line) and
correlation Z of state j�i (dashed line)
as a function of the modulation variance.
Right: practical reconciliation efficiency
for a binary modulation (dashed line)
and for a Gaussian modulation (solid
line) [18].
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Results and perspectives.—The theoretical perfor-
mances of the four-state protocol are displayed in Fig. 2.
The quantum channel is characterized by its transmission
T ¼ 	10�0:02d where 	 is the quantum efficiency of the
homodyne detection and d is the distance between Alice
and Bob, and its excess noise �, that is the noise in excess
compared to the shot noise. It should be noted that these
performances are comparable with discrete-variable proto-
cols, and are much better than previous CVQKD schemes.

Whereas Alice usually sends coherent states with a few
photons per pulse (between 3 and 10) in the Gaussian
modulation protocol, here, the optimal number of photons
per pulse typically ranges from 0.2 to 1. Therefore, the
similitudes with discrete-variable QKD are important: the
information is encoded onto low amplitude coherent states
with generally less than 1 photon per pulse. The main
difference is that homodyne detection replaces photon
counting. In our protocol, however, the error rate is not
upper bounded (and can be as close as 0.5 as the reconcili-
ation efficiency allows). This sounds in disagreement with
security proofs for discrete-variable protocols that impose
a maximum admissible quantum bit error rate (QBER).
The reason for which this is nonetheless correct is that the
error rate in our case in induced by both the noise added by
Eve as well as the losses. This is in fact equivalent to a
BB84 protocol where Bob would give a random value to
each pulse he did not detect. In this case, the QBER is
arbitrarily high, but the security is still insured. In some
sense, the main difference between the two schemes is that
the vacuum noise is processed in two very different ways:
whereas it creates ‘‘deletion errors’’ (which are ignored) in
the photon counting scheme, it produces ‘‘real errors’’
(which have to be corrected) in the continuous-variable
scheme. But in both cases, these errors due to vacuum
noise cannot be exploited by anybody, neither by the
legitimate parties, nor by Eve.

As a conclusion, we presented a new unconditionally
secure continuous-variable QKD protocol based on a dis-
crete modulation. The use of good error correcting codes at
low SNR allows us to achieve long distances, which was

impossible with a Gaussian modulation. Further work will
include analysis of the finite-key effects [20], as well as the
implementation of the present protocol.
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FIG. 2 (color online). Secret key rate as a function of the
distance for different values of the excess noise: from top to
bottom, � ¼ 0:002, 0.004, 0.006, 0.008, 0.01. The quantum
efficiency of Bob’s detection is 	 ¼ 0:6.
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