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In some of the earliest work on quantum computing, Feynman showed how to implement universal

quantum computation with a time-independent Hamiltonian. I show that this remains possible even if the

Hamiltonian is restricted to be the adjacency matrix of a low-degree graph. Thus quantum walk can be

regarded as a universal computational primitive, with any quantum computation encoded in some graph.

The main idea is to implement quantum gates by scattering processes.
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While the first quantum algorithms were based on
Fourier sampling [1], the concept of quantum walk
[2,3]—a quantum mechanical analog of classical random
walk—led to a new class of algorithms. By exploiting
interference, quantum walks can outperform random walks
at some computational tasks. For example, there is a black-
box problem showing an exponential speedup of quantum
walk over classical computation [4], and many quantum
walk algorithms achieve polynomial speedup for problems
of practical interest (e.g., [5–10]).

There are several ways to define quantum walk. Perhaps
the simplest is the continuous-time quantum walk gener-
ated by the adjacency matrix A of a graph [2]. This walk
takes place on a Hilbert space spanned by orthonormal
basis states for each vertex of the graph, with the evolution
for time t given by the unitary operator e�iAt.

This Letter explores the power of quantum walk as a
general model of computation. In this model, the walk
takes place on an N-vertex graph for which a list of neigh-
bors of any vertex can be computed efficiently, meaning in
time polyðlogNÞ (since the vertices of an N-vertex graph
can be uniquely labeled using only dlog2Ne bits). The walk
begins at one vertex, and a final vertex is measured after
time t ¼ polyðlogNÞ. I show that even a restricted version
of this model, simple quantum walk on a sparse graph, is
universal for quantum computation, meaning any problem
that can be solved by a general-purpose quantum computer
can also be solved by such a quantum walk (cf. adiabatic
evolution, which is universal in a similar sense [11–14]).

This result shows that quantum walk is computationally
powerful: in principle, any quantum algorithm can be
recast as a quantum walk algorithm. More precisely, any
m-gate quantum circuit can be simulated by a simple
quantum walk on an N-vertex sparse graph, where logN ¼
polyðmÞ. Indeed, quantumwalks and quantum circuits have
essentially the same power, since a simple quantum walk
on an N-vertex sparse graph can be simulated by a univer-
sal quantum computer using polyðlogNÞ gates [4,15]. In
particular, this means that deciding whether a quantum
walk evolves from some vertex to another or not, with a
1=polyðlogNÞ gap between the probabilities of the two

alternatives, is a BQP-complete promise problem. Not
only does this give renewed motivation to search for quan-
tum walk algorithms, but the specific construction may
suggest new algorithmic approaches. Furthermore, it may
provide tools for quantum complexity theory, as discussed
further below.
In one of the earliest papers on quantum computation,

Feynman constructed a Hamiltonian to implement any
quantum circuit [16]. While the motivation was to give a
physically reasonable description of a computing device,
this can also be loosely interpreted as showing the univer-
sality of quantumwalk as an abstract computational model,
since the dynamics of any time-independent Hamiltonian
can be viewed as a quantum walk on a weighted graph.
However, this interpretation is clearest when the graph has
bounded degree and its edges are unweighted, a setting we
refer to as simple quantum walk on a sparse graph. In [16],
the edges must have weights.
This Letter presents an alternative Hamiltonian for uni-

versal quantum computation. Here, the edges are un-
weighted, and the graph has maximum degree 3 (which
cannot be improved). The main idea is to represent com-
putational basis states by virtual quantum wires and to im-
plement quantum gates by scattering off widgets attached
to and connecting the wires. For an n-qubit circuit, we start
with 2n wires. Each wire is idealized as infinitely long, but
can be well approximated with only polyðnÞ vertices. We
begin at a single vertex at the far left of a quantum wire,
and the output of the computation corresponds to a wire on
the far right. The graph has exponentially many vertices—
i.e., the Hilbert space has exponential dimension—but
there is a simple rule determining the neighbors of any
vertex, so the quantum walk could be efficiently simulated
by a universal quantum computer. (We emphasize that
vertices represent basis states, not physical objects such
as qubits. Thus the construction does not directly give an
architecture for a physical device, in contrast with the
Feynman Hamiltonian or adiabatic quantum computing.)
We begin by briefly introducing scattering theory on

graphs. First, consider an infinite line of vertices with
corresponding computational basis states jxi for x 2 Z.
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Vertex x is connected to vertices x� 1. The eigenstates of
the adjacency matrix, parametrized by k 2 ½��;�Þ, are
the momentum states j~ki with

hxj~ki ¼ eikx (1)

for all x 2 Z (normalized so that h~kj~k0i ¼ 2��ðk� k0Þ),
with eigenvalues 2 cosk.

Now let G be a finite graph and create an infinite graph
with adjacency matrixH by attaching semi-infinite lines to
M of its vertices. Label the basis states for vertices on the
jth line as jx; ji, with x ¼ 0 at the vertex in the original
graph and x ¼ 1; 2; . . . along the line. On each line, an
eigenstate of H must be a linear combination of states of
the form (1) with momenta �k, with an eigenvalue 2 cosk,
or possibly of the same form but with k ¼ i� or k ¼ i�þ
� for some � > 0, with an eigenvalue 2 cosh� or
�2 cosh�, respectively. For each j 2 f1; . . . ;Mg and each
k 2 ½��; 0�, there is an incoming scattering state of mo-

mentum k, denoted j~k; sc!j i, of the form

hx; jj~k; sc!j i ¼ e�ikx þ RjðkÞeikx (2)

hx; j0j~k; sc!j i ¼ Tj;j0 ðkÞeikx; j0 � j (3)

on the semi-infinite lines. (Since the off-diagonal elements
of H are positive, whereas in the usual kinetic term
�d2=dx2 they are negative, our incoming states have
negative momentum.) The reflection coefficient RjðkÞ,
the transmission coefficients Tj;j0 ðkÞ, and the amplitudes

on the vertices of G are determined by the condition

Hj~k; sc!j i ¼ 2 coskj~k; sc!j i. For any fixed k, these coeffi-

cients can be found by solving jGj linear equations.
Together with bound states j~�; bd�i (for discrete values
of � > 0 that can be obtained by solving jGj � 1 linear
equations and one transcendental equation) of the form

hx; jj~�; bd�i ¼ B�
j ð�Þð�e��Þx, the states j~k; sc!j i form a

complete set of eigenstates of H that are useful for the
analysis of scattering off G.
To understand the dynamics, we expand in the basis of

incoming scattering states and bound states. For evolution
from vertex x on line j to vertex y on line j0 � j,

hy; j0je�iHtjx; ji ¼
Z 0

��
e�2it coskðTj;j0e

ikðxþyÞ þ T�
j0;je

�ikðxþyÞÞ dk
2�

þ X
�;�

e�2it cosh�B�
j0 ð�ÞB�

j ð�Þ�ð�e��Þxþy: (4)

One can argue that the contribution from the bound
states in (4) can be neglected. By the method of stationary
phase, the integral over k is dominated by those values
where the derivative of the phase of the integrand vanishes.
The second term in the integrand can be shown to have no
stationary points, and the phase of the first term is sta-
tionary for xþ yþ ‘j;j0 ðkÞ ¼ vðkÞt, where

vðkÞ :¼ d

dk
2 cosk ¼ �2 sink (5)

is the group velocity at momentum k and ‘j;j0 ðkÞ :¼
d
dk argTj;j0 ðkÞ is the effective length of the path through G

from line j to line j0. For large xþ y [17],

jhy; j0je�iHtjx; jij � jTj;j0 ðk?Þjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�jcðk?Þjp ; (6)

where the phase is stationary at k ¼ k? and cðkÞ :¼
2t coskþ d2

dk2
argTj;j0 ðkÞ.

While semi-infinite lines are convenient for analysis,
they can be replaced by long but finite lines to give a finite
graph [2]. The effect is small since the walk on a line has a
maximum propagation speed: in (5), a maximum group
velocity of 2 is obtained at k ¼ ��=2.

We now show how to implement a universal set of
quantum gates by scattering on graphs. We use the CNOT

gate and two single-qubit gates that generate SU(2).
The CNOT gate is trivial to implement. This two-qubit

gate swaps the basis states j10i and j11i, leaving the other
two states unchanged. Thus we simply exchange the ap-
propriate wires using the widget shown in Fig. 1(a).

We can implement a phase gate by applying some phase
to the j1i wire, leaving the j0i wire unchanged. To do this,

we insert the widget shown in Fig. 1(b) on the j1i wire.
Consider attaching semi-infinite lines to the terminals,
and calculate the transmission coefficient for an incident

wave of momentum k. The result is TðbÞ
in;outðkÞ ¼ 8=ð8þ

i cos2kcsc3k seckÞ, whose magnitude squared is shown in
Fig. 2. This widget has perfect transmission at k ¼ ��=4,

with TðbÞð��=4Þ ¼ 1 and ‘ðbÞð��=4Þ ¼ 1. Relative to a

single edge, this effectively introduces a phase of ei�=4.
Combining the widget on the j1iwire with a single edge for
the j0i state, we obtain the phase gate

Ub :¼ 1 0
0 ei�=4

� �
: (7)

Awidget that interacts two computational basis states is
shown in Fig. 1(c), with its transmission probabilities
shown in Fig. 2. At k ¼ ��=4, the input amplitude is
transformed into an equal superposition of output ampli-
tudes, with none sent to the input channels. The effective

FIG. 1. Widgets used to construct a universal quantum compu-
ter. Open circles indicate vertices where previous or successive
widgets can be attached. (a) CNOT gate. (b) Phase shift. (c) Basis-
changing gate. (d) Momentum filter. (e) Momentum separator.
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lengths for forward transmission are both 2. Considering
the phases of the transmission coefficients, the widget
effectively performs the unitary transformation

Uc :¼ � 1ffiffiffi
2

p i 1
1 i

� �
: (8)

Since iU2
bUcU

2
b is the Hadamard gate, Ub and Uc generate

SU(2) [18].
It is straightforward to embed these widgets in a graph

representing a computation on n qubits. For a gate on j
qubits, simply include its widget 2n�j times, once for every
setting of the n� j qubits not acted on. For example, Fig. 3
shows a graph for a two-qubit circuit. Note that although
the graph for an n-qubit circuit is exponentially large in n,
it is sparse, and the neighbors of any vertex can be com-
puted efficiently from the underlying circuit.

Using only the three gate widgets (a), (b), and (c), we
can already construct a universal quantum computer, pro-
vided the input state is chosen appropriately. Since there is
no reflection at k ¼ ��=4, the transmission coefficients
compose multiplicatively, so the concatenation of gate
widgets can describe an arbitrary quantum circuit. If the in-
put state is a wave packet consisting only of momenta close
to k ¼ ��=4, propagation through the widgets imple-
ments the circuit. But we can use a much simpler starting
state, corresponding to one particular vertex of the graph.

To do this, we design a filter that only passes momenta
near k ¼ ��=4. The basic building block is shown in
Fig. 1(d). Unlike the gate widgets, this widget includes a
semi-infinite line, which allows undesired momentum
components to be carried away.

For a single filter widget, all amplitude is transmitted
forward at k ¼ ��=4;�3�=4, whereas at other momenta,

some amplitude exits upward and some is reflected (see
Fig. 2). To filter out all but a narrow range of momenta,
repeat the widget md times in series; this can be analyzed
using a transfer matrix technique [2]. Except for k close to
��=4 or �3�=4, one eigenvalue of the transfer matrix is
bounded above 1, so the transmission coefficient is expo-
nentially small in md.
Unfortunately, the filter transmits undesired momenta

near k ¼ �3�=4 as well as the desirable momenta near
k ¼ ��=4. Although momentum components generically
propagate at different speeds, these particular components
have the same group velocity (5).
To isolate the two momenta, we use the widget shown in

Fig. 1(e), whose transmission probability is pictured in
Fig. 2. There is perfect transmission at k ¼ ��=4;

�3�=4. Furthermore, ‘ðeÞin;outð��=4Þ¼4ð3�2
ffiffiffi
2

p Þ�0:686

and ‘ðeÞin;outð�3�=4Þ ¼ 4ð3þ 2
ffiffiffi
2

p Þ � 23:3. Since the effec-

tive length of the widget is different for these two mo-
menta, it temporally separates them.
To simulate an arbitrary m-gate quantum circuit, we

simply connect widgets for the gates. At k ¼ ��=4, the
transmission coefficients of this graph exactly implement
the circuit. But a propagating wave packet comprises a
range of momenta, so we must determine how close k
should be to ��=4 to approximate the circuit. In turn,
this determines how many filter widgets to include.
To understand widget composition, it helps to view the

scattering problem in terms of 2n input channels and 2n

output channels: define matrices T , R, �T , �R as

Tj;j0 ¼ Tjin;j
0
out

Rj;j0 ¼
�
Rjin j ¼ j0
Tjin;j0in j � j0 (9)

�Tj;j0 ¼ Tjout;j
0
in

�Rj;j0 ¼
�
Rjout j ¼ j0
Tjout;j0out j � j0 (10)

for j; j0 2 f0; . . . ; 2n � 1g. The transmission and reflection
matrices for two widgets in series are

T12 ¼ T1ð1�R2
�R1Þ�1T2 (11)

R12 ¼ R1 þT1ð1�R2
�R1Þ�1R2

�T1 (12)

( �T12 and �R12 have similar expressions). These formulas
can be found by constructing scattering states for the
composed widget using those for the components.
If two widgets each have little reflection, their compo-

sition also has little reflection. Suppose kR1k; k �R1k � �1

FIG. 3. Graph implementing a Hadamard gate on the second
qubit followed by a CNOT gate controlled by the second qubit.

FIG. 2. Transmission probabilities. Top left: Phase shift
widget (b). Top right: Basis-changing gate widget (c), with input
at j0ini and outputs at j0outi (solid line), j1outi (dashed line), and
j1ini (dot-dashed line). Bottom left: Filter widget (d), with input
at jini and outputs at jouti (solid line) and the semi-infinite line
exiting upward (dashed line). Bottom right: Momentum separa-
tor widget (e).
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and kR2k;k �R2k��2; then kR12k��1þð1þ�1�2Þ�2.
Indeed, forward transmission is nearly described by the
product of the two forward transmission matrices, since
kT12 �T1T2k � �1�2ð1þ �1�2Þ.

We apply these bounds to the transmission through m
gate widgets for momenta near k ¼ ��=4. Suppose jkþ
�=4j ¼ Oð1=m2Þ; then kRk ¼ Oð1=m2Þ for each widget.
Thus the composition of allmwidgets has kRk ¼ Oð1=mÞ
for such momenta: the transmission is nearly perfect. To
remove undesired momenta, precede the gate widgets by
md¼ log�ðm2Þ filter widgets. Then the filter output has ex-
ponentially small amplitude except for momentum compo-
nents with jkþ�=4j¼Oð1=m2Þ or jkþ3�=4j¼Oð1=m2Þ.

Overall, an m-gate quantum circuit for an n-qubit uni-
tary operation U can be simulated as follows. On input
wire 0, place md ¼ log�ðm2Þ filter widgets followed by a
momentum separation widget. Add widgets for them gates
in the circuit, each with 2n inputs and 2n outputs. Prepare
the state jx; 0ini, where x ¼ �ðm2Þ to justify the approxi-

mation (6). Run the walk for time t � ðxþ ‘Þ= ffiffiffi
2

p ¼
Oðm2Þ, where ‘ is the total effective length of all widgets

and
ffiffiffi
2

p
is the group velocity. The 2n input wires, 2n output

wires, and md filter wires can all be truncated at length
greater than 2t without a significant effect. Finally, mea-
sure in the vertex basis. If the result is on some output wire
s 2 f0; 1gn [which happens with probability �ð1=m2Þ],
output that s; otherwise discard the result and start over.
The statistics of this simulation closely reproduce those of
the original quantum circuit: by (6), the amplitude to
propagate to vertex 0 on output line s is approximately
hsjUj0i 	�ð1=mÞ.

This construction shows that quantum walk is a univer-
sal computational primitive in the sense that any quantum
circuit can be efficiently simulated by a simple quantum
walk on a sparse graph. Ideas from this approach may be
applicable elsewhere in quantum information processing,
as follows.

One application is to quantum algorithms based on
scattering. Following an early proposal along these lines
[2], an algorithm for balanced binary game trees was given
in [10]; this led to quantum algorithms for evaluating broad
classes of formulas [19,20].

Another possible use is in quantum complexity theory.
Feynman’s Hamiltonian [16] was used to construct
QMA- [21] and BQP-complete [22,23] problems, and the

quantum walk construction might be applied to construct
new complete problems with desired properties.

Finally, these ideas might inspire new quantum com-
puter architectures. Of course, one cannot represent each
vertex by a physical object; an efficient implementation
must label the vertices by short bit strings and represent
these with qubits. While we have not considered any such
encoding, the underlying circuit provides some tensor
product structure; this might permit encoding the system
with a local Hamiltonian, giving a computer with no
dynamic control.
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