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We investigate highly polydisperse packings subjected to simple shear by contact dynamics simula-
tions. A major unsolved issue is how granular texture and force chains depend on the size polydispersity
and how far they influence the shear strength. The numerical treatment was made possible by ensuring the
statistical representativity of particle size classes. An unexpected finding is that the internal friction angle
is independent of polydispersity. We show that this behavior is related to two mechanisms underlying the
stability of force chains: (i) The class of largest particles captures strong force chains, and (ii) these chains
are equilibrated by weak forces carried by increasingly smaller particles as the size span broadens. In the
presence of adhesion between particles, the Coulomb cohesion increases with size polydispersity as a

result of enhanced force anisotropy.
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Most granular materials occurring in nature and indus-
trial application are composed of a broad range of particle
sizes [1,2]. Size polydispersity is a key to the space-filling
and strength properties of granular materials, and for this
reason it needs to be optimized in designing particle-based
materials such as concrete [3-5]. However, most research
work has focused on model granular systems composed of
nearly monosized particles. In highly polydisperse granu-
lar materials, the particles of a given size can fit into the
pores between larger particles. Hence, the space is filled in
a hierarchical manner as in Apollonian packings [3].
However, unlike Apollonian packings in which the fine
adjustment of particle positions leads to a fractal structure,
the polydisperse granular media are generically disordered,
and their multiscale microstructure is a consequence of the
filling procedure. Novel features are thus expected to
emerge due to force transmission through a disordered
contact network involving a hierarchy of length scales.

The difficulty for a systematic investigation lies mainly
in the preparation of well-calibrated polydisperse samples
of the same material in order to be able to isolate properly
the effect of polydispersity from other factors such as
particle shape, surface effect, etc. On the other hand, a
few existing theoretical models have been essentially con-
cerned with a solid fraction constructed according to par-
ticular space-filling strategies [2,6—8].

In this Letter, we use numerical simulations to inves-
tigate the shear behavior and force transmission in highly
polydisperse granular media. We developed a numerical
approach allowing us to prepare and shear large packings
of circular particles of variable size distribution. The chal-
lenge is that a broad size distribution with well-represented
populations of different sizes requires many more particles
than a narrow distribution [9]. In the following, we briefly
describe our approach that combines three ingredients: (i) a
generic size distribution function, (ii) an efficient assem-
bling method, and (iii) a fast dynamic method for shearing
the granular samples.
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The size distribution is represented by the cumulate
volume distribution defined as the cumulative volume
h(d) of the particles as a function of particle diameter d.
We use a distribution function based on the cumulative
distribution which allows us to generate a broad range of
distributions with only two parameters controlling the
shape of the distribution. The size span is defined by s =
(dmax - dmin)/ (dmax + dmin)7 where dmin and dmax are the
smallest and largest diameters, respectively. A monodis-
perse distribution corresponds to s = 0, and the limit s =~ 1
corresponds to an infinitely polydisperse system [9].

For assembling the particles into a dense packing, we
use a geometrical deposition method according to simple
geometrical rules [10]. Each particle is deposited over
those already deposited in the lowest position at the free
surface. This method is efficiently implemented in a com-
puter code with periodic boundary conditions in the hori-
zontal direction. The packings prepared by this method are
homogeneous in particle size and thus involve no size
segregation.

The packings prepared by geometrical procedure are
allowed to relax to static equilibrium under a constant
vertical stress o, applied on the upper wall. The gravity
is set to zero in order to avoid stress gradients. The simu-
lations are performed by means of the contact dynamics
method [11,12], which is the genuine method for the
simulation of perfectly rigid particles. We simulated sev-
eral packings of 10* particles with the size span s varying
from s = 0.2 to s = 0.96. During relaxation, the coeffi-
cient of friction between particles is set to zero in order to
obtain nearly isotropic and dense packings. At the end of
relaxation, the solid fraction p for each value of s is slightly
above its value in the geometrically deposited packing. It
varies nonlinearly from p = 0.82 for s = 0.2 to p = 0.92
for s = 0.96. Two conditions are required to fill efficiently
the pores: (i) a broad size distribution, which corresponds
to higher values of s (s > 0.4 in our simulations), and (ii) a
large number of smaller particles, controlled in our model
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by the shape parameters. A parametric study of the solid
fraction as a function of shape parameters shows that the
largest value of the solid fraction is obtained with a uni-
form distribution by particle volume fraction defined by
h(d) = (d — diin)/(dax — dmin)- The above condition ap-
pears therefore to be best met for this distribution. The
results presented below were obtained with this distribu-
tion, although they remain valid irrespective of shape
parameters. Given the disordered microstructure of these
samples with an optimal filling of space, they can be
qualified as polydisperse random close packings.

The coefficient of friction between particles is set to
p = 0.4 in the relaxed packings, and they are sheared by
subjecting the upper wall to a small horizontal velocity v
and constant confining pressure o, while the lower wall is
kept immobile. During shear, all samples dilate from their
initially high density and tend to a constant solid fraction in
the steady state depending on s. The stress tensor in the
sample is given by o;; = n.(ff{5), where n, is the number
density of contact and the average is taken over the con-
tacts ¢ with contact force f¢ and branch vector €¢ joining
the centers of contacting particles [13—16]. The mean stress
is p= (o, + 0,)/2, where o, and o, are the principal
stress values. We also define a stress deviator ¢ = (o] —
0,)/2. During shear, the shear stress jumps initially to a
high value before decreasing to a nearly constant value in
the steady state. The steady-state shear stress ¢*/p char-
acterizes the shear strength of the material. According to
the Mohr-Coulomb model, the shear strength of granular
materials can be split in two contributions: (i) the internal
angle of friction ¢ and (ii) the Coulomb cohesion c. In 2D,
these two parameters are related to ¢* by [1]

q* = psing* + ccosp™. (1)

Figure 1 shows ¢* as a function of s for cohesionless
packings. Surprisingly, we observe that ¢* is almost inde-
pendent of size span s. This result is rather counterintuitive
as it is often believed that the shear strength in granular
materials should increase with the solid fraction, which is
an increasing function of s. In order to understand the
origin of this paradox, we analyzed in the following the
microstructure and force transmission.

Figure 2 displays a snapshot of the force network for s =
0.96. We observe strong force chains preferentially passing
through larger particles. At the same time, a large number
of small particles are excluded from the force network. In
other words, the large particles capture the strongest force
chains, whereas small particles often miss them. The pack-
ing becomes therefore more inhomogeneous in force trans-
mission as the size span becomes broader. This is best
illustrated by the probability density function (PDF) of
normal forces shown in Fig. 3 for different values of s
[13]. We see that the PDF becomes broader as s increases,
and it takes a decreasing power-law form (o f~¢) in the
range of weak forces (below the mean force) with an
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FIG. 1 (color online). Internal friction sing™ as a function of
particle size span s both from raw simulation data and as
predicted by Eq. (5). The error bars indicate the standard
deviation of stress fluctuations in the steady state.

increasing exponent as a function of s. This enhanced force
inhomogeneity is in strong contrast with the fact that the
packing becomes more homogeneous in terms of the solid
fraction as the size span broadens.

The force network is linked with the stress components
via the expression of the stress tensor that we write down
here in its integral form [13-16]:

Top =1, [[ Fal@es@)P e F. € Wdfded,  (2)

where P, ( £, ¢, 7) is the joint PDF of the forces f and

branch vectors € = €ii . At the lowest-order description of
the force network, we neglect the correlations and split the
joint probability function as a product of three independent
functions Pfgn(f, {n) = Pf(f)P€(€)P,,(ﬁ). Then integra-

tion over f and € yields
Tap e [ SADCHOP O B)

where () is the angular domain of integration and (€)(17)
and (f)(n) are the average branch vector length and force
as a function of contact orientation vector 7 = (cos#, sinf)
in 2D, respectively. In this framework, a model of stress
transmission is reduced to the choice of the functions (€) X

0), ¢ f)(e), and P,(#). The contact force f can be repre-
sented by its normal and tangential components f,(#) and
f+(0), respectively.

The above four functions describe the general state of
the packing. Under shearing, the packing self-organizes
itself into a ““pure” state where the state functions are well
approximated by their lowest-order Fourier expansion
[16,17]:

P,(0) = 717_{1 + a.cos2(60 — 6,)},
(OX0) = (EN1 + agcos2(0 — 0,)},
fud0) = (f, {1 + a, cos2(60 — 0,)},

(f(0) = —(f,)a,sin2(6 — 6,),
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FIG. 2. A snapshot of a highly polydisperse packing with size
span s = 0.96: (a) the entire sample and (b) a zoom. The floating
particles excluded from the force network are in white. Line
thickness is proportional to normal force.

where a,, ay, a,, and a, are anisotropy parameters and the
angles 6., 6,, 0,, and 6, represent the corresponding
privileged directions; see Fig. 4. In general, the privileged
angles can be all different, but in a sheared state they tend
to follow the principal stress direction (8, = 6. = 0, =
6, = 6,). Now, inserting the Fourier expansions (4) into
the integral expression (3) of stress and neglecting cross
products between anisotropy parameters, one gets

singp™ =

SHIER

1
~ E(ac +a, +a, + a,). 5)
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FIG. 3 (color online). Probability distribution function of nor-
mal forces f = f,/{f,) normalized by the average force (f,) for
different values of size span s.

The predicted values of sing™ by this equation are shown in
Fig. 1 together with the measured values as a function of s.
We see that Eq. (5) approximates well the friction angle for
all values of s.

The evolution of the four anisotropies with s is displayed
in Fig. 4 from the simulation data. Interestingly, the force
anisotropies a, and a, are independent of s. This is con-
sistent with the observation that the strong force chains,
underlying the force anisotropies for the most part, are
mainly guided by the class of largest particles irrespective
of 5. However, the contact orientation anisotropy a, de-
clines with s, reflecting the fact that the larger particles are
surrounded by an increasing number of small particles as s
increases. At the same time, the length anisotropy a,
increases with s since the longest branch vectors occur
between the largest particles that align themselves with the
strong force chains. It is remarkable that a,. and a; evolve
with s but their sum a, + a, remains constant. By virtue of
Eq. (5), this compensation between a, and a,, together with
the fact that a,, and a, do not evolve with s, implies that ¢*
is independent of the size span. In this way, the indepen-
dence of the internal friction angle with respect to size
polydispersity appears to be a consequence of the multi-

FIG. 4 (color online). Evolution of state anisotropies as a
function of the size span in the steady shear state. The error
bars correspond to the standard deviation of the fluctuations in
the steady state. The polar diagrams of the corresponding angu-
lar distributions (black symbols) are shown for s = 0.96 together
with their fits (red) by truncated Fourier expansions [Eq. (4)].
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FIG. 5 (color online). Evolution of Coulomb cohesion ¢ nor-
malized by the average pressure in the steady state as a function
of size span s. The error bars correspond to the standard
deviation of stress fluctuations in the steady state. The inset
shows the steady-state anisotropies as a function of s.

scale nature of the force network. Schematically, the force
chains cascade from large scales (large particles) down to
small scales (small particles), and the effect of increasing
the size span is to replace the particles propping the strong
force chains by a growing population of smaller particles.

In order to elucidate the effect of polydispersity in the
presence of cohesion, we performed simple shear simula-
tions under the same boundary conditions as before but
with an additional constant adhesion force —f, between
contacting particles. The adhesion force being reversible,
we obtain cohesive packings with well-defined shear
strength in the steady state. We find that the shear strength
g*/ p increases with s, whereas ¢ keeps the same value as
in cohesionless packings. Hence, according to Eq. (1), the
Coulomb cohesion ¢ increases with size span s as shown in
Fig. 5. We see that the main contribution to cohesion stems
from the force anisotropies a,, and a, that increase with s
given the same constant value of local adhesion. In other
words, the effect of adhesion is enhanced by size
polydispersity.

In summary, our simulations provide clear evidence that,
in highly polydisperse granular media, the internal friction
angle is independent with respect to the particle size span.
This unexpected feature was shown to be a consequence of
the interplay between force chains and a hierarchy of
length scales. Our results also clarify the amplifying effect

of polydispersity on the Coulomb cohesion of cohesive
granular materials.

Our findings are relevant to a wide class of granular
materials where size polydispersity and adhesion are es-
sential to the behavior. Since the force networks present
generally similar phenomenology in 2D and 3D, we expect
that our results will apply also in 3D. Presently, 3D simu-
lations are under way but require considerably more par-
ticles for the sake of statistical representativity of size
populations and thus much more demanding computation
time.
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