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We test for the existence of a spin-glass phase transition, the de Almeida–Thouless line, in an externally

applied (random) magnetic field by performing Monte Carlo simulations on a power-law diluted one-

dimensional Ising spin glass for very large system sizes. We find that a de Almeida–Thouless line oc-

curs only in the mean-field regime, which corresponds, for a short-range spin glass, to dimension d larger

than 6.
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Perhaps the most surprising prediction of the mean-field
theory of spin glasses is that an Ising spin glass has a line of
transitions in an external magnetic field, the de Almeida–
Thouless (AT) [1] line. This instability line separates a
high-temperature high-field paramagnetic phase where re-
laxation times—possibly very large—stay finite from a
low-temperature low-field phase where the energy land-
scape has valleys separated by truly infinite barriers in the
thermodynamic limit. The AT line, an ergodic to non-
ergodic transition with no change in symmetry, is perhaps
the most striking prediction of the mean-field theory of
spin glasses. Whether or not it occurs in realistic systems is
a major unsolved problem.

The existence or otherwise absence of an AT line in real
(short-range) spin glasses is also a key feature distinguish-
ing the two most popular scenarios for the nature of the
spin-glass state below the (zero-field) transition tempera-
ture: the replica-symmetry breaking (RSB) picture of
Parisi [2] and the ‘‘droplet picture’’ of Fisher and Huse
[3,4]. The RSB picture assumes that the behavior of real
spin glasses is very similar to that of the mean-field solu-
tion [2] of the Sherrington-Kirkpatrick infinite-range
model. Since the mean-field model has a stable spin-glass
state in a field and thus has an AT line, it is proposed that
this also occurs for any short-range system with a finite-
temperature transition in zero field. By contrast, the droplet
picture makes certain assumptions about the nature of the
low-energy, large-scale excitations (droplets) from which
one finds no AT line in any dimension.

Experimentally, it has been harder to determine if an AT
line occurs than to show that there is a transition in zero
field. For the latter case, the divergence of the nonlinear
susceptibility provides a clear signature of the transition.
Unfortunately, the nonlinear susceptibility does not diverge
in a field, i.e., along the AT line. However, as noted by two
of us [5], there is a closely related static quantity which
diverges on the AT line and which can be measured in
simulations, albeit not in experiments. A finite-size scaling

analysis of the two-point correlation length indicated the
absence of an AT line for three-dimensional (3D) Ising spin
glasses [5,6]. Subsequently, the same idea was applied to a
one-dimensional (1D) model by Katzgraber and Young
(KY) [7], in which every spin interacts with every other
spin in the system with a strength which falls off with a
power of the distance. By varying the power, one can
simulate the whole range of possible behaviors [4,7,8],
from infinite-range through mean-field to non-mean-field
and finally to the absence of a finite-temperature transition.
This is analogous to changing the space dimension d of
short-range finite-dimensional models. KY found that an
AT line does occur for parameter values corresponding to
the mean-field case (for short-range systems that would be
for d � 6) but not in the non-mean-field case (d < 6). The
possibility of a critical dimension above which the AT line
occurs had been considered before; see, for example, the
discussion in Ref. [9].
Model and observables.—The model studied by KY is

fully connected so the CPU time for one Monte Carlo
sweep (MCS) grows as OðL2Þ, where L is the number of
spins. This is inefficient for large L. Recently, this diffi-
culty was removed in an elegant way in Ref. [10] by
diluting the interactions and fixing the connectivity z. We
thus study

H ¼ �X
i;j

"ijJijSiSj �
X
i

hiSi; (1)

where Si ¼ �1 are Ising spins evenly distributed on a ring
of length L in order to ensure periodic boundary condi-
tions. The sum is over all spins on the chain, and the
couplings Jij are normally distributed with zero mean

and standard deviation unity (independent of distance).
The dilution matrix "ij takes values 1 or 0, and a nonzero

entry appears with probability pij, where pij � r�2�
ij , with

rij ¼ ðL=�Þ sinð�ji� jj=LÞ representing the geometric

distance between the spins. The power� is a key parameter
of the model. To avoid the probability of placing a bond
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being larger than 1, a short-distance cutoff is applied, and
thus we take

pij ¼ 1� expð�A=r2�ij Þ; z ¼ XL�1

i¼1

piL: (2)

The constant A is determined numerically by fixing the
average coordination number z. Note that this model has
the same long-range interactions on average, ½J2ij�av �
1=r2�ij , as in KY but has only Lz=2 bonds rather than LðL�
1Þ=2. Hence the linear scaling of the CPU time for one
MCS.

As in the fully connected case [7], by varying � one can
tune the model in Eq. (1) from the infinite-range to the
short-range universality class. For 0<� � 1=2 the model
is in the infinite-range universality class in the sense that
the parameter A vanishes for N ! 1, and for � ¼ 0 it
corresponds to the Viana-Bray model [11]. For 1=2<� �
2=3 the model describes a mean-field long-range spin
glass, corresponding—in the analogy with short-range sys-
tems—to a short-range model in a dimension above the
upper critical dimension d � du ¼ 6 [12]. For 2=3<� �
1 the model has non-mean-field critical behavior with a
finite transition temperature Tc. For � � 1, the transition
temperature is zero. We are interested in finite-range mod-
els which have a nonzero Tc, i.e., 1=2<� � 1.

A rough correspondence between a value of � in the
long-range 1D model and the value of a space dimension d
in a short-range model can be obtained from

d ¼ 2� �ðdÞ
2�� 1

; (3)

where �ðdÞ is the critical exponent � for the short-range
model, which is zero in the mean-field regime. Equa-
tion (3) has the following required properties: (i) d ! 1
corresponds to � ! 1=2, (ii) the upper critical dimension
du ¼ 6 corresponds to �u ¼ 2=3, and (iii) the lower criti-
cal dimension, which is where dl � 2þ �ðdlÞ ¼ 0, corre-
sponds to �l ¼ 1. For example, in 3D, � ¼ 0:384ð9Þ [13],
and thus the corresponding exponent is � ’ 0:90.

In this study, we set the average coordination number to
zav ¼ 6 and use site-dependent random fields hi chosen
from a Gaussian distribution with zero mean ½hi�av ¼ 0

and standard deviation ½h2i �1=2av ¼ HR. The latter has the
advantage that we can perform a detailed test for equili-
bration of the data when using Gaussian-distributed inter-
actions [7,14] (see below).

To determine the existence of an AT line, we compute
the two-point finite-size correlation length [5,15,16]. For
this we start by determining the wave-vector-dependent
spin-glass susceptibility given by

�SGðkÞ ¼ 1

L

X
i;j

½ðhSiSjiT � hSiiThSjiTÞ2�aveikði�jÞ; (4)

where h. . .iT denotes a thermal average and ½. . .�av an

average over the disorder. To avoid bias, each thermal
average is obtained from a separate copy of the spins, so
we simulate four copies at each temperature. The correla-
tion length is given by [7]

�L ¼ 1

2 sinðkm=2Þ
�
�SGð0Þ
�SGðkmÞ � 1

�
1=ð2��1Þ

; (5)

where km ¼ 2�=L is the smallest nonzero wave vector
compatible with the boundary conditions. According to
finite-size scaling,

�L=L�X½L1=�ðT � TcÞ�; � > 2=3;

�L=L
�=3 �X½L1=3ðT � TcÞ�; 1=2<� � 2=3;

(6)

with � ¼ 1=ð2�� 1Þ in the mean-field regime [8]. Hence,

if there is a transition at T ¼ Tc, data for �L=L (�L=L
�=3 in

the mean-field region) for different system sizes L should
cross at Tc.
We also present data for �SG � �SGð0Þ, which has the

finite-size scaling form

�SG � L2��C½L1=�ðT � TcÞ�; � > 2=3;

�SG � L1=3C½L1=3ðT � TcÞ�; 1=2<� � 2=3:
(7)

Hence, curves of �SG=L
2�� (�SG=L

1=3 in the mean-field

TABLE I. Parameters of the simulations for different field
strengths HR and exponents �. Nsa is the number of samples,
Nsw is the total number of Monte Carlo sweeps, Tmin is the
lowest temperature simulated, and NT is the number of tempera-
tures used in the parallel tempering method for each system size
L. The last column shows the parameter A [Eq. (2)] fixing zav ¼
6 neighbors.

� HR L Nsa Nsw Tmin NT A

0.60 0.10 128 8000 8192 0.480 46 0.994 58

0.60 0.10 256 8000 32 768 0.480 46 0.903 63

0.60 0.10 512 5000 131 072 0.480 46 0.838 27

0.60 0.10 1024 5000 524 288 0.480 46 0.789 26

0.60 0.10 2048 4500 65 536 1.393 26 0.751 40

0.75 0.00 128 5000 32 768 0.300 50 1.711 41

0.75 0.00 256 5000 32 768 0.300 50 1.642 89

0.75 0.00 512 5000 524 288 0.300 50 1.598 59

0.75 0.00 1024 2900 2 097 152 0.300 50 1.569 03

0.75 0.00 2048 1000 2 097 152 0.480 46 1.548 92

0.75 0.00 4096 1000 65 536 1.192 31 1.535 06

0.75 0.00 8192 500 131 072 1.192 31 1.525 44

0.75 0.10 128 5000 32 768 0.480 46 1.711 41

0.75 0.10 256 5000 131 072 0.480 46 1.642 89

0.75 0.10 512 5000 262 144 0.480 46 1.598 59

0.75 0.10 1024 5000 524 288 0.480 46 1.569 03

0.75 0.10 2048 2800 524 288 0.710 39 1.548 92

0.85 0.10 128 6000 16 384 0.300 50 2.394 85

0.85 0.10 256 6000 65 536 0.300 50 2.348 67

0.85 0.10 512 6800 524 288 0.300 50 2.321 89

0.85 0.10 1024 2500 2 097 152 0.300 50 2.305 92
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regime) should also intersect. This is particularly useful for
long-range models since � is given by the naive expression
2� � ¼ 2�� 1 exactly.

As discussed in KY, for the simulations to be in equi-
librium with Gaussian fields and bonds, the following
equality must hold:

Uðq̂l; qÞ ¼ � 1

T

�
Nb

L
ð1� q̂lÞ

�
av
�H2

R

T
ð1� qÞ; (8)

where q ¼ L�1
P

i½hSii2T�av is the spin overlap, q̂l ¼
N�1

b

P
i;j"ijhSiSji2T is the link overlap of a given sample,

and Nb is the number of nonzero bonds of the sample. To
speed up equilibration, we use the parallel tempering (ex-
change) Monte Carlo method [17,18]. Simulations are

performed at zero field, as well as at HR ¼ 0:1, a value
considerably smaller than TcðHR ¼ 0Þ for the values of �
studied. For details, see Table I.
Results.—We start by showing in Fig. 1(a) data for �L=L

against T for � ¼ 0:75 in zero field, for several system
sizes. The data intersect cleanly at Tc ’ 1:50, indicating a
transition at that point; see Eq. (6). The inset shows
�SG=L

2�� using the exact value � ¼ 1:5.
In contrast to Fig. 1(a), which shows the expected zero-

field transition for � ¼ 0:75, Fig. 1(b) shows no intersec-
tions in a small fieldHR ¼ 0:1 [approximately 0.067 of the
zero-field Tc shown in Fig. 1(a)]. Thus there is no AT line
for � ¼ 0:75, except possibly for even smaller values of
the field. Note that � ¼ 0:75 is in the non-mean-field
regime (2=3<�< 1). Whereas the data for � ¼ 0:75

FIG. 1 (color online). (a) Finite-size correlation length divided by L as a function of T for different sizes for HR ¼ 0 and � ¼ 0:75
(non-mean-field region). The inset shows �SG=L

2�� using the exact value � ¼ 3� 2� ¼ 1:5. In both cases, the data cross, indicating
a phase transition at zero field. (b) The same as (a) but for HR ¼ 0:1. The absence of an intersection down to low T shows that there is
no transition in a field [the shaded area corresponds to TcðHR ¼ 0Þ]. The inset shows data for a bimodal (�J) distribution of bonds, as
used in Ref. [19], for sizes L ¼ 256–1024 on a linear topology. While Ref. [19] find a finite-temperature transition (shaded area in the
inset), we see no sign of it. The absence of a transition is even more clear in (c), where we show data as in (b) but for � ¼ 0:85, i.e.,
deeper into the non-mean-field regime. In (d) we show data for the correlation length divided by L�=3ð¼ L5=3Þ as a function of T for
different sizes for HR ¼ 0:1 and � ¼ 0:60 (in the mean-field region). The inset shows �SG=L

1=3. The intersections show that there is a
transition in a field, i.e., an AT line for this value of �.
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for small sizes merge, and it is only for the larger sizes that
the data do not even meet, for � ¼ 0:85—deeper in the
non-mean-field regime—even the data for small sizes
do not meet at any temperature down to T ¼ 0:30; see
Fig. 1(c).

For comparison, we also show data in the mean-field
regime where an AT line is expected to occur [7]. For � ¼
0:60 and HR ¼ 0:1, there is a clear intersection; see
Fig. 1(d). The temperature of the intersections is slightly

different in the two cases, about 1.60 for �L=L
5=3 and about

1.75 for �SG=L
1=3, suggesting finite-size effects, possibly

due to long negative tails in the spin overlap distribution;
see Fig. 2 and Ref. [19].

We note that very recent work by Leuzzi et al. [19]
comes to a different conclusion. Using Eq. (1) with bimo-
dally distributed disorder, they find a transition in a field in
the non-mean-field regime, in particular, for � ¼ 0:75 and
HR ¼ 0:1, where we do not find a transition; see Fig. 1(b).
We have no explanation for this discrepancy. We have done
several checks, including developing two versions of the
code independently and verifying that they give the same
results. Furthermore, we have simulated the model with the
same bimodal disorder and geometry as used in Ref. [19],
as well as the same field and � values, finding no signature
of a transition [see the inset in Fig. 1(b)].

Summary.—Our conclusion, based on numerical results,
is that there is an ‘‘upper critical dimension’’ close to 6 for
the AT line, in agreement with KY. This conclusion is
distinct from RSB theory [2], which predicts an AT line
in any space dimension with a zero-field transition, and the
droplet picture [3,4], according to which there is no AT line

in any finite dimension. Of course, the numerical data
cannot rule out a transition at extremely small fields.
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Note added in proof.—We have recently learned [20]

that there was an error in the analysis of Ref. [19] and that
their results for � ¼ 0:75 are now much closer to ours.
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