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Starting from the full many-body Hamiltonian of interacting electrons the effective self-energy acting

on electrons residing in a subspace of the full Hilbert space is derived. This subspace may correspond to,

for example, partially filled narrow bands, which often characterize strongly correlated materials. The

formalism delivers naturally the frequency-dependent effective interaction (the Hubbard U) and provides

a general framework for constructing theoretical models based on the Green’s function language. It also

furnishes a general scheme for first-principles calculations of complex systems in which the main

correlation effects are concentrated on a small subspace of the full Hilbert space.
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One of the most important quantities in studying the
electronic structure of materials is the spectral function, a
quantity that contains information about the electronic
excitations of the system obtained from photoemission
and inverse photoemission experiment corresponding to
the addition and removal of an electron. A suitable tool
to describe the spectral function is the one-electron Green’s
function. To calculate the Green function of the full many-
body Hamiltonian is a tremendous task and such calcula-
tions, within the GW approximation (GWA) [1,2], have
become feasible thanks to the rapid progress in computer
performance. However, two serious difficulties are ham-
pering further progress: first, for many cases, the system
size is too large for realistic GW calculations and second,
from the theoretical point of view, the GWA may not be
sufficient to treat correlation problems, especially those in
materials with strong correlations containing partially
filled narrow bands. These materials with many intriguing
properties have been discovered in recent years [3].

The traditional approach for treating such systems is to
introduce a model Hamiltonian, focusing on a small sub-
space of the full Hilbert space that is considered to be most
relevant for the correlation problem at hand. Notable ex-
amples are the Hubbard model and the Anderson impurity
model with the assumption of a local statically screened
Coulomb interaction known as the Hubbard U. These
models have given us a lot of physical insight into corre-
lation problems ranging from the Kondo effect to high
temperature superconductivity. However, these models
are not strictly derived from the many-body Hamiltonian
and they contain an adjustable parameter U.

The purpose of the present work is to derive from the full
many-body Hamiltonian an effective self-energy corre-
sponding to a subspace of the full Hilbert space, expressed
in terms of the one-particle Green’s function of the sub-
space. This subspace could be identified as, for example,
partially filled narrow bands crossing the Fermi level,

where most of the correlations take place, a typical situ-
ation in materials with strong correlations. The task is then
to derive an effective self-energy acting on electrons resid-
ing in this subspace. As a result of the derivation, the
effective screened interaction among electrons belonging
to the subspace, i.e., the Hubbard U, emerges naturally.
There have been several works related to the present

one. One of the early works is due to Bassani et al. [4], who
divided the full Hilbert space onto the core and valence
electrons subspaces and derived an effective Hamiltonian
only for the valence electrons. However, they neglected the
coupling between the two subspaces, which in our context
is indispensable. Another related work on downfolded
Hamiltonian may be found in [5,6].
Let us start by defining some basic variables and quan-

tities. The many-electron Hamiltonian is given by

H ¼
Z

d3rĉþðrÞh0ðrÞĉ ðrÞ þ 1

2

�
Z

d3rd3r0 ĉþðrÞĉþðr0Þvðr� r0Þĉ ðr0Þĉ ðrÞ; (1)

where h0 is the one-particle part of the Hamiltonian and

ĉ ðrÞ is the field operator. We aim at downfolding the
many-body problem onto a subspace of the full Hilbert
space, which can consist of, for example, 3d or 4f orbitals.
From now on we refer to the subspace as the d subspace.
We first divide the complete field operator into the d field
and the rest, denoted by d and r, respectively:

ĉ ðrÞ ¼ ĉ dðrÞ þ ĉ rðrÞ ¼
X
d

�dðrÞĉd þ
X
r

�rðrÞĉr: (2)

�d and �r are the one-particle orbitals and ĉd and ĉr are the
associated annihilation operators. We use a convention that
(rt) is represented by a number. Since we will utilize the
Schwinger functional derivative technique [7] to develop a
closed set of equations forGd, where a probing field’ð1Þ is
applied to probe the linear response of the Green function,
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we define the following Green’s functions in the Dirac or
interaction representation.

iGdð1; 2Þ ¼ hT½Ŝĉ dð1Þĉþ
d ð2Þ�i

hŜi ; (3)

iGrdð1; 2Þ ¼ hT½Ŝĉ rð1Þĉþ
d ð2Þ�i

hŜi ; (4)

Ŝ ¼ T exp

�
�i

Z
d3’ð3Þĉþð3Þĉ ð3Þ

�
: (5)

Before proceeding further with a detailed derivation, we
first summarize schematically our final result of a closed
set of equations for the effective self-energy and the Green
function of the d subspace.

�eff ¼ �d þ �rd þ�drd; (6)

Pd ¼ �iGd�Gd; (7)

�d ¼ 1þ ��eff

�Gd
Gd�dGd; (8)

W ¼ Wr þWrPdW; (9)

Gd ¼ gd þ gd�effGd: (10)

As a convention, we denote a basis in the d subspace by
Greek letters (�) and in the rest of the Hilbert space by
small roman letters (n) whereas capital letters (N) denote
the full Hilbert space. A small letter g is used to denote a
noninteracting Green’s function throughout this Letter.
From ð!� h��ÞG ¼ 1, where h is the Hartree
Hamiltonian and � is the self-energy of the full Hilbert
space, the effective self-energy �eff is given by

�eff
�� ¼ ��� þ ðh�n þ��nÞGrd

n�ðGdÞ�1
��: (11)

The first term on the right-hand side is confined to the d
subspace and the second represents a coupling between the
d and r subspaces. Thus, the effective self-energy �eff

�� is

not a simple projection of the full self-energy onto the d
subspace ���, but it also contains the effects of the off-

diagonal matrix elements ��n between the d and r sub-
spaces as well as one-particle hoppings h�n arising from
the Hartree Hamiltonian. Through Grd and ðGdÞ�1 the
effective self-energy depends implicitly on all components
of the self-energy.

In contrast to the original Hedin’s equations, instead of
the bare Coulomb interaction v we have in (9) Wr, a
frequency-dependent effective interaction among electrons
residing in the chosen d subspace. This effective interac-
tion is screened by Pd, the polarization propagator of the d
electrons, yielding the fully screened interaction W of the
full system. �d is an effective vertex acting on the d sub-
space only and consequently different from the full vertex.

If the subspace is isolated and identified as the Hilbert
space of a Hubbard model and Wr is approximated by a
local and static interaction (the Hubbard U), �d is then the
exact self-energy of the Hubbard model. The explicit ex-
pressions for the self-energies will be shown later. In
addition to �d the true effective self-energy �eff contains
a term, �rd, which is the self-energy arising from the r
subspace acting on the d subspace and a hopping term�drd

representing hybridization between the d and r subspaces.
For a given Wr the effective self-energy is a functional of
Gd only.
We now proceed with the derivation of the above set of

equations and use the convention that repeated indices are
summed and repeated variables are integrated, unless they
appear on both sides of the equation. We define projection
operators for the d and r subspaces as follows:

�ið1; 2Þ ¼ �iðr1Þ��
i ðr2Þ�ðt1 � t2Þ; ði ¼ d; rÞ: (12)

Projecting the equation of motion of the full Green’s
function on to the d subspace on the right we obtain�

i
@

@t1
� hð1Þ

�
~Gð1; 2Þ � ~�ð1; 3ÞGdð3; 2Þ ¼ �dð1; 2Þ;

(13)

where h is the Hartree Hamiltonian and

~Gð1; 2Þ ¼ Gð1; 3Þ�dð3; 2Þ ¼ Grdð1; 2Þ þGdð1; 2Þ: (14)

The self-energy ~� is related to the full self-energy �
according to

~�ð1; 3ÞGdð3; 2Þ ¼ �ð1; 4Þ ~Gð4; 2Þ: (15)

Projecting (13) on the left on the d and r subspaces,
respectively, we obtain

i
@

@t1
Gdð1; 2Þ ��dð1; 3Þhð3Þ½Grdð3; 2Þ þGdð3; 2Þ�

� �dð1; 3Þ~�ð3; 4ÞGdð4; 2Þ ¼ �dð1; 2Þ; (16)

i
@

@t1
Grdð1; 2Þ � �rð1; 3Þhð3Þ½Grdð3; 2Þ þGdð3; 2Þ�

� �rð1; 3Þ~�ð3; 4ÞGdð4; 2Þ ¼ 0: (17)

These two equations of motion can also be obtained by
evaluating the equations of motion of the field operators

ĉ d and ĉ r.
Rewriting (17) in frequency space and working in the

basis representation we solve for Grd:

Grd
n�ð!Þ ¼ grnmð!Þ½hm� þ ~�m�ð!Þ�Gd

��ð!Þ; (18)

where gr is the noninteracting Green’s function of the r
subspace: gr ¼ ½!� hr��1. Substituting the above expres-
sion for Grd in (16) yields the effective self-energy for Gd.

½!��� � h�� ��eff
��ð!Þ�Gd

��ð!Þ ¼ ���; (19)
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�eff
��ð!Þ ¼ ~���ð!Þ þ �drd

�� ð!Þ; (20)

�drd
�� ð!Þ ¼ h�ng

r
nmð!Þ½hm� þ ~�m�ð!Þ�: (21)

�drd is zero if we choose the orbitals to be eigenstates of
the Hartree Hamiltonian since h�n ¼ 0 and the effective

self-energy is then simply given by ~�.
We have established the general form of the downfolded

self-energy of the chosen d subspace, which we are now in

the position to calculate. The crucial quantity is ~�, from
which the effective self-energy can be readily obtained.
From the Schwinger functional derivative technique [7] we
have the following well-known relation that relates the
self-energy to the functional derivative of the Green func-
tion with respect to the applied external field [1,2].

�ð1; 4ÞGð4; 2Þ ¼ iWð3; 1Þ�Gð1; 2Þ
�Vð3Þ : (22)

Projecting the above relation and the Dyson equation on
the right on to the d subspace, and using the relation in (15)
yields, respectively,

~�ð1; 4ÞGdð4; 2Þ ¼ iWð3; 1Þ�
~Gð1; 2Þ
�Vð3Þ ; (23)

~Gð1; 2Þ ¼ ~gð1; 2Þ þ gð1; 3Þ~�ð3; 4ÞGdð4; 2Þ; (24)

where ~g ¼ g�d and g is the Hartree Green’s function. We
have defined V as the sum of the Hartree and external
fields: V ¼ VH þ ’, and the screened Coulomb interaction

W ¼ ð�V=�’Þv ¼ "�1v. The quantity ~� is in fact the
sum of �d and �rd appearing in (6), which are defined as
follows:

�d ¼ iW
�Gd

�V
ðGdÞ�1; �rd ¼ iW

�Grd

�V
ðGdÞ�1; (25)

~� ¼ �d þ �dr: (26)

We note that �d � hdj�̂jdi and �rd � hrj�̂jdi. The split-
ting of ~� into �d and �rd is useful when making compari-
son with the conventional Hubbard model.

To calculate ~� we need to take the functional derivative

of ~G with respect to the probing field. However, ~G cannot
be inverted and consequently the usual procedure of using
the identity �ðGG�1Þ ¼ 0 does not apply. We therefore

must calculate � ~G=�V in Eq. (23) directly using the ex-

pression for ~G in (24). This yields

~�ð1;2Þ¼�gWð1;3Þ ~Gð3;4ÞðGdÞ�1ð4;2Þ

þ iWð3;1Þgð1;4Þ�
~�ð4;2Þ
�Vð3Þ

þ iWð3;1Þgð1;4Þ~�ð4;5ÞGdð5;6Þ�dð6;2;3Þ; (27)

where

�gWð1; 2Þ ¼ iWð2; 1Þgð1; 2Þ: (28)

The effective vertex of the d subspace is given by

�dð1; 2; 3Þ ¼ ��ðGdÞ�1ð1; 2Þ
�Vð3Þ : (29)

Using (19) for ðGdÞ�1 the equation for the effective vertex
�d is given by

�dð1; 2; 3Þ ¼ �dð1; 3Þ�dð3; 2Þ þ �dð1; 10Þ��
effð10; 20Þ

�Gdð4; 5Þ
� �dð20; 2ÞGdð4; 6Þ�dð6; 7; 3ÞGdð7; 5Þ: (30)

The right-hand side has been obtained by using the chain
rule ��eff=�V ¼ ð��eff=�GdÞð�Gd=�VÞ and the identity
�Gd ¼ �Gd�ðGdÞ�1Gd. Equation (27) is the desired
equation to determine the effective self-energy.
Finally, the polarization propagator of the d subspace,

Pd ¼ ��d=�V, where �d is the electron density in the d
subspace, is given by

Pdð1; 2Þ ¼ �iGdð1; 3Þ�dð3; 4; 2ÞGdð4; 1þÞ: (31)

Defining the rest of the polarization as Pr ¼ P� Pd, it is
straightforward to verify that with

Wr ¼ vþ vPrWr ¼ ½1� vPr��1v: (32)

Equation (9) is equivalent to W ¼ vþ vPW. This com-
pletes our derivation of the closed set of equations for Gd

and the effective self-energy, which is schematically given
in Eqs. (6)–(10), and in detail in Eqs. (9), (19), (20), (30),
and (31). This set of equations may be regarded as a set of
downfolded Hedin’s equations for a given Wr. This quan-
tity may be calculated, for example, within the constrained
random-phase approximation (CRPA) scheme [6]. For a
given screened interaction Wr, the self-energies and hence
the effective self-energy are functionals of Gd only, as can
be seen from (27).
It is instructive to compute the effective self-energy in

our formalism within the GWA, where the vertex correc-

tion �~�=�V is neglected and �d ¼ 1, in order to verify that

the present formalism reproduces the definition of ~� in
(15). From (27)

~�ð1; 4ÞGdð4; 2Þ ¼ �gWð1; 5Þ ~Gð5; 2Þ þ iWð3; 1Þgð1; 4Þ
� ~�ð4; 5ÞGdð5; 3ÞGdð3; 2Þ: (33)

gð1; 4Þ~�ð4; 5ÞGdð5; 3Þ on the right-hand side is a renormal-

ization correction to ~g in ~G in (24). This together with W
forms a self-energy correction to �gW . Utilizing the rela-
tion in (15) we thus obtain

~�ð1; 4ÞGdð4; 2Þ ¼ �GWð1; 5Þ ~Gð5; 2Þ; (34)

where

�GWð1; 2Þ ¼ iWð2; 1ÞGð1; 2Þ; (35)
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in agreement with the expression in (15) when the full self-
energy is approximated by the GWA.

The decomposition of the effective self-energy into �d

and�rd allows for some general applications. One possible
application is to devise a scheme beyond the GWA for the d
subspace only, while keeping the contribution from the r
subspace at the GW level. Thus, the d subspace, which is
typically much smaller than the full Hilbert space, can be
treated in a tractable way at a more sophisticated level than
the GWA by including vertex corrections on the chosen d
subspace only. The formalism also provides a route for
numerical simplification of the GWA, by focusing on a
certain subspace, which can be treated with high accuracy,
while treating the rest of the subspace in an approximate
scheme. For example, to understand the electronic proper-
ties of correlated materials may require accurate knowl-
edge of the electronic structure around the Fermi level to
within a few tens of meV. Full GW calculations for these
complex systems with such high accuracy are not realistic
but by focusing on the much smaller d subspace the
computations may become feasible.

The set of equations for the downfolded self-energy
provides a general framework for constructing theoretical
models in the Green function language. It offers an alter-
native to model Hamiltonians, which cannot readily take
into account frequency-dependent interactions. Rather
than first mapping the full Hamiltonian to a model
Hamiltonian with a static U and then solving the model
using the Green function technique, the present formalism
allows for a direct route to the self-energy with a fully
frequency-dependent effective interaction. When Wr is
approximated by a local and static value and �rd and
�drd are neglected, it becomes evident that the set of
equations may be interpreted as equivalent to the
Hubbard model, provided the d subspace is chosen to be
the same as the Hilbert space of the Hubbard model.
Consequently, these two self-energy terms have no coun-
terparts in the Hubbard model. Two ingredients are there-
fore missing in the Hubbard model, namely, the frequency
dependence of U, which can be important [6], and the
effects of the energy dependence of the self-energy arising
from the r subspace. The present formalism can be used to
improve the Hubbard or the Anderson impurity model by
providing better parameters and by including the effects of
the self-energy arising from the r subspace and the effects
of the frequency-dependent Wr within, for example, the
GWA.

In real applications, the choice of the d subspace is not
always clear-cut. An example of this is provided by tran-
sition metals, where one would usually choose the 3d
bands as the d subspace. However, due to the hybridization

with the 4s and 4p bands, the 3d bands are not completely
isolated. In this case, one possible solution is to first con-
struct a set of Wannier orbitals following the postprocess-
ing procedure of Marzari and Vanderbilt [8] or the
preprocessing procedure of Andersen [9]. From this set
of Wannier orbitals an isolated set of bands can be calcu-
lated forming a well-defined d subspace [10].
In conclusion, we have derived from the full many-body

Hamiltonian a closed set of equations for the effective self-
energy acting on a subspace of the full Hilbert space. The
effective frequency-dependent interaction or the Hubbard
U appears naturally in this formalism. This frequency-
dependent interaction is usually not accounted for in con-
ventional model Hamiltonians. The formalism provides a
general framework for handling complex systems in which
the main correlation effects are concentrated on a certain
subspace, such is the case in many correlated materials
characterized by partially filled narrow bands.
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