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We describe neutron scattering, NMR relaxation, and thermal transport properties of Z2 spin liquids in

two dimensions. Comparison to recent experiments on the spin S ¼ 1=2 triangular lattice antiferromagnet

in �-ðETÞ2Cu2ðCNÞ3 shows that this compound may realize a Z2 spin liquid. We argue that the topological

‘‘vison’’ excitations dominate thermal transport, and that recent thermal conductivity experiments by M.

Yamashita et al. have observed the vison gap.
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Much attention [1–7] has recently focused on the or-
ganic compound �-ðETÞ2Cu2ðCNÞ3 because it may be the
first experimental realization of a resonating valence bond
spin liquid [8,9]. This compound belongs to a class [10,11]
of organic Mott insulators which can be described by S ¼
1=2 spins residing on the vertices of a triangular lattice.
Experiments have not detected any magnetic order or a
structural distortion leading to a doubling of the unit cell
in �-ðETÞ2Cu2ðCNÞ3, and so there is justifiable optimism
that the elusive spin liquid state may finally have been
found.

The debate then turns to the identification of the precise
spin liquid state, among the many possible candidates.
Measurements of the electronic specific heat, CP, by
S. Yamashita et al. [3] were interpreted to yield a nonzero
low temperature (T) value of � ¼ limT!0CP=T. Such a
nonzero � is characteristic of a Fermi surface, and hence a
spin liquid state with a Fermi surface of neutral, S ¼ 1=2,
fermionic spinons was postulated [3,5,6]. However, it
should be noted that the measurement of � involves a
potentially dangerous subtraction of a divergent nuclear
specific heat [3].

Very recently, M. Yamashita et al. have measured [4] the
thermal conductivity, �, to below T � 0:1 K. This has the
advantage of focusing on the mobile excitations, and not
being contaminated by a nuclear contribution. A spinon
Fermi surface should yield a nonzero low T limit for �=T,
but this quantity was clearly observed to vanish. Instead,
the measured � was fit reasonably well by the activated
behavior �� expð���=TÞ, with a ‘‘gap’’ �� � 0:46 K.
Furthermore, � was found to be insensitive to an applied
field for H < 4 T, suggesting that the gap �� is associated
with a spinless excitation. These observations appear to be
incompatible with spinon Fermi surface states at these low
T, and we shall present an alternative theory here.

Also of interest are the measurements [2] of the NMR
relaxation rate, 1=T1. The power-law behavior 1=T1 � Ta,
with the exponent a � 1:5, was observed for 0:02< T <
0:3 K. This requires the presence of spinful excitations
with a gapless spectrum at the fields of the NMR experi-
ment, although at zero field there may well be a small
spin gap.

In this Letter, we will compare these observations with
the Z2 spin liquid state originally proposed in Refs. [12–
14]. The low energy excitations of this state are described
by a Z2 gauge theory, and the spinful excitations are con-
structed from S ¼ 1=2 quanta (the spinons) which carry a
Z2 electric charge. Crucial to our purposes here are vortex-
like spinless excitations [15] which carry Z2 magnetic flux,
later dubbed ‘‘visons’’ [16]. A number of solvable models
of Z2 spin liquids, with spinon and vison excitations, have
been constructed [16–22]. We propose here that it is the
visons which dominate the thermal transport in
�-ðETÞ2Cu2ðCNÞ3, and the gap �� is therefore identified
with a vison energy gap,�v. If our interpretation is correct,
the vison has been observed by M. Yamashita et al. [4].
Our proposal requires that the density of states of

low energy vison excitations is much larger than that
of all other excitations. A model appropriate to
�-ðETÞ2Cu2ðCNÞ3 is the triangular lattice S ¼ 1=2 antifer-
romagnet with nearest neighbor two-spin exchange (J2)
and plaquette four-spin (J4) exchange which was studied
by LiMing et al. [23]. They found antiferromagnetic order
at J4 ¼ 0 (as in earlier work [24]), and a quantum phase
transition to a spin liquid state with a spin gap around
J4=J2 � 0:1. Notably, they found a very large density of
low-lying spin singlet excitations near the transition. We
propose here that �-ðETÞ2Cu2ðCNÞ3 is near this quantum
phase transition, and identify these singlets with visons
which have a small gap and bandwidth, both much smaller
than the spin exchange J2 � 250 K. We will argue below
that at T � J2, and comparable to the vison bandwidth,
visons will dominate the thermal transport.
Further support for the proximity of a magnetic ordering

quantum-critical point comes from [11] the closely related
series of compounds X½PdðdmitÞ2�2. By varying the anisot-
ropy of the triangular lattice by varying X, we obtain
compounds with decreasing magnetic ordering critical
temperatures, until we eventually reach a compound with
a spin gap and valence bond solid order [25]. In between is
the compound [26] with X ¼ EtMe3P (Et and Me denote
C2H5 and CH3, respectively) which has been proposed to
be at the quantum-critical point [11], and has properties
similar to �-ðETÞ2Cu2ðCNÞ3. Finally, series expansion
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studies [27] also place the triangular lattice antiferro-
magnet near a quantum-critical point between mag-
netically ordered and valence bond solid states.

A description of the NMR experiments requires a theory
for the spinon excitations of the Z2 spin liquid. The many
models of Z2 spin liquids [12–22] have cases with either
fermionic or bosonic spinons. While we do not find a
satisfactory explanation for the NMR with fermionic spi-
nons, we show that a model [12–14] of bosonic spinons in a
spin liquid close to the quantum phase transition to the
antiferromagnetically ordered state (as found in the model
of Liming et al. [23]) does naturally explain the T depen-
dence of 1=T1. We shall show below that the quantum-
critical region for this transition leads to 1=T1 � T �� with
the exponent [28,29] �� ¼ 1:37, reasonably close to the
measured value a ¼ 1:5. It is important to note that the
vison gap,�v, remains nonzero across this magnetic order-
ing critical point [30]. Consequently, our interpretation
of the experiments remains valid even if the system ac-
quires a small antiferromagnetic moment, as may be the
case in the presence of the applied magnetic field present in
the NMR measurements.

The remainder of the Letter presents a number of com-
putations of the physical properties of Z2 spin liquids, and
uses them to elaborate on the experimental interpretation
sketched above.

We begin with a theory [31] of the spinon excitations
near the quantum-critical point between the magnetically
ordered state and the Z2 spin liquid. Here the low energy
spinons are S ¼ 1=2 complex bosons z�, with � ¼" , # a
spin index, and the low energy imaginary time action is

S ¼ 1

g

Z
d2rd�½j@�z�j2 þ c2jrrz�j2�; (1)

where (r, �) are spacetime coordinates, g is a coupling
which tunes the transition to the spin liquid present for
some g > gc, and c is a spin-wave velocity. We impose the
local constraint

P
�jz�j2 ¼ 1 in lieu of a quartic self-

interaction between the spinons. This theory has an emer-
gent O(4) global symmetry [29,32] (which becomes mani-
fest when z� is written in terms of its real and imaginary
components). This symmetry is an enlargement of the
SU(2) spin rotation symmetry, and we will neglect the
irrelevant terms which reduce the symmetry to SU(2).

Dynamic spin susceptibility.—The dynamic spin corre-
lations of S near the quantum-critical point can be com-
puted by the 1=N expansion on the OðNÞmodel, which has
been described elsewhere [33]. With an eye towards pos-
sible future neutron scattering measurements, we first de-
scribe the dynamic spin susceptibility �ðk;!Þ as a function
of momentum k and real frequency!. Here the momentum
k is measured as a deviation from the ordering wave vector,
Q, of the antiferromagnetically ordered state. At g ¼ gc
and T ¼ 0, this has the quantum-critical form

�ðk;!Þ ¼ A

ðc2k2 �!2Þ1� ��=2
; (2)

where the exponent �� is related to the scaling dimension
of the composite spin operator �z��

y
�� ~���z� ( ~� are

the Pauli matrices), and is known with high precision
from field-theoretic studies [28] [ �� ¼ 1:374ð12Þ] and
Monte Carlo simulations [29] [ �� ¼ 1:373ð2Þ]. The overall
amplitudeA is nonuniversal, but the sameA will appear
in a number of results below. Integrating Eq. (2) over all k,
we obtain the local susceptibility �Lð!Þ, which is also
often measured in scattering experiments, again at g ¼
gc and T ¼ 0:

Im�Lð!Þ ¼ Asgnð!Þ
4c2

sinð	 ��=2Þ
	 ��=2

j!j ��: (3)

Let us now move into the spin liquid state, with g > gc,
where the spinons have an energy gap �z. The critical
results in Eqs. (2) and (3) will apply for j!j � �z, but
for j!j � 2�z, we will have spectra characteristic of the
creation of a pair of spinons (we set @ ¼ 1, although it
appears explicitly in a few expressions below). Computing
the pair creation amplitude of noninteracting spinons, we

obtain a step-discontinuity threshold at ! ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2k2 þ 4�2

z

q
(at T ¼ 0). However, the spinons do have a repulsive
interaction with each other, and this reduces the phase
space for spinon creation at low momentum, as described
in the supplementary material; the actual threshold behav-
ior is [34]

Im�ðk;!Þ ¼ ACsgnð!Þ
�

2� ��
z


ðj!j �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 4�2

z

q
Þ

ln2ðj!2�k2�4�2
z j

16�2
z

Þ
; (4)

where C is a universal constant; to leading order in the 1=N
expansion, C ¼ N2=16. We can also integrate the
k-dependent generalization of Eq. (4) to obtain a threshold
behavior for the local susceptibility at 2�z: Im�Lð!Þ �
sgnð!Þðj!j � 2�zÞ=ln2ðj!j � 2�zÞ.
NMR relaxation.—Turning to the NMR relaxation rate,

we have to consider T > 0, and compute

� ¼ lim
!!0

kBT

!
Im�Lð!Þ: (5)

This is far more subtle than the computations at T ¼ 0,
because we have to compute the damping of the quantum-
critical excitations at T > 0 and extend to the regime! �
T. From general scaling arguments [33], we have

� ¼ A
c2

ðkBTÞ ���ð�z=ðkBTÞÞ; (6)

where� is a universal function. The computation of� for
undamped spinons atN ¼ 1 is straightforward and, unlike
the case for confining antiferromagnets [33], yields a rea-

sonable nonzero answer: �ðyÞ¼½4	ey=2ð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
4þey

p Þ��1.
However, the 1=N corrections are singular, because � has a
singular dependence upon the spinon lifetime. A self-
consistent treatment of the spinon damping is described
in the supplementary material, and leads to the quantum-
critical result (�z ¼ 0):
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�ð0Þ ¼ ð ffiffiffi
5

p � 1Þ
16	

�
1þ 0:931

lnN

N
þ . . .

�
: (7)

Thermal conductivity.—We now turn to the thermal
transport coefficient measured in the recent revealing ex-
periments of Ref. [4]. We consider the contribution of the
spinons and visons in turn below, presenting further argu-
ments on why the vison contribution can dominate in the
experiments.

(i) Spinons. For agreement with the NMRmeasurements
of 1=T1 [2], we need the spinons to be in the quantum-
critical regime, as described above. Therefore, we limit our
considerations here to the quantum-critical thermal con-
ductivity of the spinons, �z, with �z ¼ 0. This can be
obtained from the recent general theory of quantum-
critical transport [35] which yields

�z ¼ sc2�
imp
z ; (8)

where s is the entropy density of the spinons, and 1=�imp
z is

the spinon momentum relaxation rate, with the T depen-
dence

�
imp
z � T2=��3: (9)

Here � is the critical exponent of the O(4) model [36], � ¼
0:749ð2Þ, and so �imp

z � T�0:33. The two-dimensional en-
tropy density can be obtained from the results of Ref. [33]:

s ¼ 3N�ð3Þk3BT2

2	@2c2

�
4

5
� 0:3344

N
þ . . .

�
; (10)

where � is the Riemann zeta function. We estimate the
coefficient in Eq. (9) in the supplementary material using a
soft-spin theory with the spinons moving in a random
potential, VðrÞjz�j2, due to impurities of density nimp

each exerting a Yukawa potential Vq ¼ Vz=ðq2 þ2Þ;
this leads to [34]

�z � Nc2@k4B
4T2Tz

animpV
2
z

�
T

Tz

�
2=��3

: (11)

Here a is the spacing between the layers, and Tz is the
spinon bandwidth in temperature units and is proportional
to the spinon velocity c.

(ii) Visons. The visons are thermally excited across an
energy gap, �v, and so can be considered to be a dilute
Boltzmann gas of particles of mass mv. We assume there
are Nv species of visons. The visons see the background
filling of spins as a magnetic flux through the plaquette on
the dual lattice, and hence the dynamics of visons can be
well described by a fully frustrated quantum Ising model
on the honeycomb lattice. Detailed calculations show that
there are four minima of the vison band with an emergent
O(4) flavor symmetry at low energy [17]; therefore Nv ¼
4. As with the spinons, the visons are assumed to scatter off
impurities of density nimp with, say, a Yukawa potential

Vq ¼ Vv=ðq2 þ2Þ. We use the fact that at low T, and for

a large vison mass mv, the visons are slowly moving. So
each impurity scattering event can be described by a
Tmatrix¼½mv lnð1=kÞ=	��1 characteristic of lowmomen-

tum scattering in two dimensions. Application of Fermi’s

golden rule then yields a vison scattering rate 1=�
imp
v ¼

	2nimp=½mvln
2ð1=kÞ�. This formula becomes applicable

when lnð1=kÞVv=ð@22=2mvÞ � 1; i.e., the impurity po-
tential becomes nonperturbative. We can now insert this
scattering rate into a standard Boltzmann equation compu-

tation of the thermal conductivity �v ¼ 2k2BTnv�
imp
v =mv,

where nv is the thermally excited vison density and the

typical momentum k� ðmvkBTÞ1=2, to obtain

�v ¼ Nvmvk
3
BT

2ln2ðTv=TÞe��v=ðkBTÞ

4	@3nimpa
: (12)

Here Tv is some ultraviolet cutoff temperature which can
be taken as the vison bandwidth. Note that for a large
density of states of vison excitations, i.e., a large mv, the
prefactor of the exponential can be large. Similar calcula-
tions will not lead to a logarithmic divergence for the
critical spinon z due to the positive anomalous dimension
of jzj2, and therefore the impurity scattering of spinons is
perturbative for Vz=ðc@Þ2 < 1.
Using Eq. (12), we fit the thermal conductivity measured

by M. Yamashita et al. in Ref. [4] by tuning parameters Tv

and �v. The best fit values are Tv ¼ 8:15 K, and �v �
�� ¼ 0:238 K, as shown in Fig. 1. For a consistency
check, we calculate the ratio between the thermal conduc-
tivities contributed by spinons and visons using Eqs. (11)
and (12) and assuming moderate spinon impurity strength
Vz=ðc@Þ2 � 1:

�z

�v

� kBTz

mvc
2

�
T

Tz

�
2=��3 1

ðlnTv=TÞ2
e�v=kBT

� Tv

Tz

�
T

Tz

�
2=��3 1

ðlnTv=TÞ2
e�v=ðkBTÞ: (13)

We plot this ratio in Fig. 2, with Tz � J2 ¼ 250 K and
other parameters as above, for the experimentally relevant
temperature between 0.1 K and 0.6 K; we find consistency
because � is dominated by the vison contribution. The
vison dispersion is quadratic above the vison gap, and
this leads to a T-independent � ¼ Cp=T when T > �v,

as observed in experiments [3]. Our estimate of the vison

2 4 6 8 10
-1

-5

-3

-7

FIG. 1 (color online). Fit of the T dependence of the vison
thermal conductivity in Eq. (12) to the thermal conductivity
measurements by M. Yamashita et al. [4]; Tv, �v and the overall
prefactor were the fit parameters.
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bandwidth, Tv, is also consistent with a peak in both CP [3]
and � [4] at a temperature close to Tv.

The vison gap, �v, obtained here is roughly the same as
the temperature at which the 1=T1 of NMR starts to deviate
from the low temperature scaling of Eq. (6) [2]. When T is
above �v, thermally activated visons will proliferate. We
discuss a theory of the spin dynamics in this thermal vison
regime in the supplement, and find a 1=T1 with a weaker T
dependence compared to that present for T <�v. These
observations are qualitatively consistent with the NMR
data for 0:25< T < 10 K [2].

Reference [4] also measured the thermal conductivity, in
an applied field H up to 10 T. There was little change in �
for H < 4 T. As H couples to the conserved total spin,
it only appears as an opposite ‘‘chemical potential’’ term
for z�, modifying the temporal derivative ½@� þ
ðH=2Þ�z�zy½@� � ðH=2Þ�z�z. At the quantum-critical
point, this term will induce a condensate of z, i.e., a non-
collinear magnetically ordered state. We do not expect a
significant difference in the thermal conductivity of the
gapless spinons versus gapless spin waves across this
second order transition. We conjecture that the change at
4 T is associated with a vison condensation transition to a
valence bond solid, as the field scale is on the order of the
energy scales noted in the previous paragraph. This tran-
sition is possibly connected to theH-dependent broadening
of the NMR spectra [2].

We have described the properties of a Z2 spin liquid,
on the verge of a transition to a magnetically ordered
state. We have argued that the quantum-critical spinons
describe the NMR observations [2], while the visons (with
a small energy gap and bandwidth) dominate the thermal
transport [4].
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K. Kanoda, S. Kivelson, and T. Senthil for useful discus-
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No. DMR-0757145.

[1] Y. Shimizu et al., Phys. Rev. Lett. 91, 107001 (2003).
[2] Y. Shimizu et al., Phys. Rev. B 73, 140407(R) (2006).

[3] S. Yamashita et al., Nature Phys. 4, 459 (2008).
[4] M. Yamashita et al., Nature Phys. 5, 44 (2009).
[5] O. I. Motrunich, Phys. Rev. B 72, 045105 (2005).
[6] S.-S. Lee, P. A. Lee, and T. Senthil, Phys. Rev. Lett. 98,

067006 (2007).
[7] Y. Qi and S. Sachdev, Phys. Rev. B 77, 165112 (2008).
[8] P. Fazekas and P.W. Anderson, Philos. Mag. 30, 423

(1974).
[9] S. A. Kivelson, D. S. Rokhsar, and J. P. Sethna, Phys. Rev.

B 35, 8865 (1987).
[10] B. J. Powell and R.H. McKenzie, J. Phys. Condens. Matter

18, R827 (2006).
[11] Y. Shimizu et al., J. Phys. Condens. Matter 19, 145 240

(2007).
[12] N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991).
[13] R. A. Jalabert and S. Sachdev, Phys. Rev. B 44, 686

(1991).
[14] S. Sachdev, Phys. Rev. B 45, 12 377 (1992).
[15] N.Read and B.Chakraborty, Phys.Rev.B 40, 7133 (1989).
[16] T. Senthil and M. P. A. Fisher, Phys. Rev. B 63, 134521

(2001).
[17] R. Moessner and S. L. Sondhi, Phys. Rev. B 63, 224401

(2001).
[18] A. Y. Kitaev, Ann. Phys. (N.Y.) 303, 2 (2003).
[19] X. G. Wen, Phys. Rev. B 44, 2664 (1991); Phys. Rev. Lett.

90, 016803 (2003).
[20] M. Freedman et al., Ann. Phys. (N.Y.) 310, 428 (2004).
[21] F. Wang and A. Vishwanath, Phys. Rev. B 74, 174423

(2006).
[22] G. Misguich and F. Mila, Phys. Rev. B 77, 134421 (2008).
[23] W. LiMing et al., Phys. Rev. B 62, 6372 (2000).
[24] R. R. P. Singh and D.A. Huse, Phys. Rev. Lett. 68, 1766

(1992).
[25] M. Tamura, A. Nakao, and R. Kato, J. Phys. Soc. Jpn. 75,

093 701 (2006); Y. Shimizu et al., Phys. Rev. Lett. 99,
256403 (2007).

[26] T. Itou, A. Oyamada, S. Maegawa, M. Tamura, and
R. Kato, Phys. Rev. B 77, 104413 (2008).

[27] Z. Weihong, R. H. McKenzie, and R. R. P. Singh, Phys.
Rev. B 59, 14 367 (1999).

[28] P. Calabrese, A. Pelissetto, and E. Vicari, Phys. Rev. B 67,
054505 (2003).

[29] S. V. Isakov, T. Senthil, and Y. B. Kim, Phys. Rev. B 72,
174417 (2005).

[30] In the ordered state, the visons have a logarithmic inter-
action, and the self-energy of an isolated vison diverges
logarithmically with system size.

[31] A. V. Chubukov, T. Senthil, and S. Sachdev, Phys. Rev.
Lett. 72, 2089 (1994).

[32] P. Azaria, B. Delamotte, and T. Jolicoeur, Phys. Rev. Lett.
64, 3175 (1990).

[33] A. V. Chubukov, S. Sachdev, and J. Ye, Phys. Rev. B 49,
11 919 (1994).

[34] See EPAPS Document No. E-PRLTAO-102-005920 for
supplementary information, which includes the 1=N deri-
vation of the spin susceptibility, and the vison contribution
to susceptibility and thermal conductivity. For more infor-
mation on EPAPS, see http://www.aip.org/pubservs/
epaps.html.

[35] S. A. Hartnoll et al., Phys. Rev. B 76, 144502 (2007); M.
Müller and S. Sachdev, Phys. Rev. B 78, 115419 (2008).

[36] M. Hasenbusch, J. Phys. A 34, 8221 (2001).

0.2

T

0.10

0.15

0.20

0.25

0.60.50.40.3

FIG. 2 (color online). Ratio of the thermal conductivity of
spinons to visons in Eq. (13).

PRL 102, 176401 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending
1 MAY 2009

176401-4


