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Nonlinearity and disorder are the recognized ingredients of the lattice vibrational dynamics, the factors

that could be diminished, but never excluded. We generalize the concept of q breathers—periodic orbits in

nonlinear lattices, exponentially localized in the linear mode space—to the case of weak disorder, taking

the Fermi-Pasta-Ulan chain as an example. We show that these nonlinear vibrational modes remain

exponentially localized near the central mode and stable, provided the disorder is sufficiently small. The

instability threshold depends sensitively on a particular realization of disorder and can be modified by

specifically designed impurities. Based on this sensitivity, an approach to controlling the energy flow

between the modes is proposed. The relevance to other model lattices and experimental miniature arrays is

discussed.
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Nonlinearity and disorder are ubiquitous and unavoid-
able features of discrete extended systems, the key players
in a wealth of fundamental dynamical and statistical physi-
cal phenomena such as thermalization, thermal conductiv-
ity, wave propagation, electron and phonon scattering.
Lattice vibrational modes are central to these processes.
Nonlinearity induces interaction between normal modes,
but may or may not lead to the energy equipartition [the
Fermi-Pasta-Ulam (FPU) problem] [1], and makes possible
time-periodic solutions exponentially localized in direct
space (discrete breathers) [2]. Linear systems with disorder
yield exponentially localized Anderson modes (AMs) [3].
But while the individual effects of nonlinearity and dis-
order are well-established, a satisfactory full understanding
of their concurrent effect is missing. This gap is being
progressively filled for strongly disordered and weakly
nonlinear lattices by intensive research on continuation
of AMs into nonlinear regime [4], wave packet spreading
[5], light propagation in photonic lattices [6], and Bose-
Einstein condensate (BEC) localization in random optical
potentials [7].

Little, however, is known on how the systems with
pronounced nonlinearity and weak disorder behave.
Remarkably, it is a demand in a number of experimental
and applicational contexts, beside a challenge from theory.
Micro- and nano-electro-mechanical systems are rapidly
developing components in microinstruments design [8].
Their array structures offer broadband excitations, elastic
waves, and effects of dispersion to be utilized [9,10]. They
are often suggested to operate in the nonlinear regime,
while maturing technology reduces fabrication errors,
hence diminishing spatial disorder. On the atomic scale,
surface vibrational modes of three-dimensional gold nano-
clusters may stay behind active and selective catalytic
properties [11].

One of the fundamental types of nonlinear oscillatory
modes are q breathers (QBs)—exact time-periodic solu-
tions continued from linear modes and exponentially lo-

calized in the linear mode space. Originally proposed to
explain the FPU paradox (the energy locking in low-
frequency modes, recurrencies, and size-dependent sto-
chasticity thresholds) [12], they have been discovered in
two and three-dimensional finite and infinite lattices, dis-
crete nonlinear Schrödinger (DNLS) arrays, and quantum
Bose-Hubbard chains [13]. QBs have been suggested as
major actors in a BEC pulsating instability and a four-wave
mixing process in a nonlinear crystal [14].
In this Letter we extend the concept of QBs to weakly

random nonlinear lattices, exemplifying in the FPU chain.
The cornerstones of our approach are continuation of QBs
into nonzero ‘‘frozen’’ disorder and statistical analysis of
constructed solutions. QBs demonstrate the crossover from
the exponential localization near the central mode to pla-
teaus at a distance, and complete delocalization if a deter-
mined threshold is overcome. The average stability
threshold in nonlinearity remains the same in the first order
of approximation. In contrast, the standard deviation in-
creases linearly with disorder, manifesting a high sensitiv-
ity on realizations. We analyze and explain the effect of the
particular inhomogeneities and discuss the energy flow
control by impurities design. The developed theory applies
to physical arrays that are insufficiently large or disordered
to display AMs, but manifest pronounced interplay be-
tween nonlinearity and disorder. It suggests a way to
approach strongly disordered systems in terms of QBs on
top of the AMs space.
The FPU-� chain ofN equal masses, coupled by springs

with disorder in linear coefficients and quartic nonlinearity
in potential, is described by the Hamiltonian
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where xnðtÞ is the displacement of the nth particle from its
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original position, pnðtÞ its momentum, x0 ¼ xNþ1 ¼ 0,
�n 2 ½�1=2; 1=2� are random, uniformly distributed,
and uncorrelated with h�n�mi ¼ �2

��n;m, �
2
� ¼ 1=12 in

our case. A canonical transformation xnðtÞ ¼
ffiffiffiffiffiffiffiffi
2

Nþ1

q
�PN

q¼1 QqðtÞ sinð�qnNþ1Þ defines the reciprocal wave number

space with N normal mode coordinates QqðtÞ, being solu-

tions to the linear disorder-free case. The normal mode
space is spanned by q and represents a chain similar to the
situation in real space. It yields

€Qq þ!2
qQq ¼ � �

2ðN þ 1Þ

� XN
p;r;s

Cq;p;r;s!q!p!r!sQpQrQs

� Dffiffiffiffiffiffiffiffiffiffiffiffiffi
N þ 1

p XN
p

!q!pKq;pQp: (2)

Here !q ¼ 2 sin �q
2ðNþ1Þ are the normal mode frequencies.

The coupling coefficients Cq;p;r;s [12] induce the selective

nonlinear interaction between distant modes and Kq;p ¼
2ffiffiffiffiffiffiffiffi
Nþ1

p P
Nþ1
n¼1 �n cos

�qðn�1=2Þ
Nþ1 cos�pðn�1=2Þ

Nþ1 reflect the all-to-

all linear interaction due to disorder. Nonlinearity and

disorder parameters � ¼ �=ðN þ 1Þ, d ¼ D=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
N þ 1

p
are

assumed to be small: �, d � 1.
Our methodology is two step. First, we take a known QB

solution for � � 0 [12]. A particular realization of f�ng is
fixed and an asymptotic expansion in powers of f�; dg is
developed. Linear stability analysis of the constructed
solution is carried out. Second, we study the statistical
properties of the QB solution and instability threshold
calculating respective averages and variances.

Note, that an alternative reciprocal space can be given by
the modes of the disordered linear array. Still, the current
choice allows for a detailed analytical study. In general, the
theory of QBs can be formulated in the disordered modes
space, their continuation into nonzero nonlinearity being
proved by Albanese and Froehlich [4]. It offers a promising
approach to the wave packet spreading problem in non-
linear strongly disordered lattices [4].

Continuation of QBs to �, D � 0 from � � 0, D ¼ 0
employs the same technique as to � � 0,D ¼ 0 from � ¼
D ¼ 0 [12]. For �, d � 1 and small amplitude excitations
the q oscillators get effectively decoupled, their harmonic
energy Eq ¼ 1

2 ð _Q2
q þ!2

qQ
2
qÞ being almost conserved in

time. Single q-oscillator excitations are trivial time-
periodic and q-localized solutions for � ¼ D ¼ 0.

For d ¼ 0 such periodic orbits can be continued into
� � 0 at fixed total energy [12] because the nonresonance
condition n!q0 � !q�q0 (integer n) holds for any finite

size [15] and the Lyapunov theorem [16] applies. Same
ideas are expected to work for d � 1, as the spectrum
remains nonresonant with the probability 1 [4]. Such con-
tinuation succeeded for all parameters we took.

Numerically, we continue QBs from � � 0, D ¼ 0
solutions increasing D and keeping f�ng fixed. The total
energy of the chain is E ¼ 1 in all examples, and 100
realizations of disorder are generated. Dependence of the
average QB energy distribution on the level of disorder is
reported in Fig. 1. We observe an exponentially localized
profile on the almost flat disorder-induced background.
The plateau grows with D gradually absorbing localized
modes. For � ¼ 0:01, q0 ¼ 5, N ¼ 32 the plateau over-
comes E3q0 nearD ¼ 0:01, but Eq0 holds beyondD> 2, as

interpolation predicts. Interestingly, representation in the
disordered modes space (filled diamonds) exhibits a typical
QB profile with reduced background. It indicates that the
theory of QBs in case of strong disorder should be devel-
oped in this reciprocal space.

Recall, that in caseD ¼ 0 the QB solution Q̂NL
q ðtÞwith a

low-frequency seed mode number q0 can be written as an
asymptotic expansion in powers of � [12]. The energies of
the modes q0, 3q0; . . . ; ð2nþ 1Þq0; . . . � N read

ENL
ð2nþ1Þq0 ¼ �2nEq0 ; � ¼ 3�Eq0ðN þ 1Þ

8�2q20
; (3)

and the frequency !NL ¼ !q0ð1þ 9=4�Eq0Þ. Now we de-

velop a perturbation theory to (2) in terms of the small

disorder parameter d: Q̂qðtÞ ¼ Qð0Þ
q ðtÞ þ dQð1Þ

q ðtÞ þ . . . , its

frequency being !̂ ¼ !ð0Þ þ d!ð1Þ þ . . . , substituting

Qð0Þ
q ðtÞ ¼ Q̂NL

q ðtÞ and !ð0Þ ¼ !NL. In the first order ap-

proximation (2) becomes the equation of a forced oscilla-

tor: €Qð1Þ
q þ!2

qQ
ð1Þ
q ¼ �!q!q0Kq;q0Q

ð0Þ
q0 . It follows that all

modes get excited by disorder, their amplitude the bigger
the closer its frequency to !q0 :

Að1Þ
q ¼ � !q!q0

!2
q �!2

q0

Kq;q0Aq0 ; q � q0; (4)

the frequency being !̂ ¼ !q0ð1þ 9=4�Eq0 þ d=2Kq;q0Þ.
As hKq;q0i ¼ 0, the first order corrections in d vanish for

the averages hAð1Þ
q i ¼ h!ð1Þi ¼ 0. Naturally, the variances

are nonzero as the amplitude and frequency corrections
vary depending on f�ng. The mode energy (averaged on
2�=!̂) approximately separates into nonlinearity and
disorder-induced parts Eq � ENL

q þ EDO
q , where
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FIG. 1 (color online). The average mode energy distribution in
QBs with q0 ¼ 5, � ¼ 0:01, N ¼ 32 under increasing disorder.
Dashed lines are theoretical estimates (5). Filled diamonds:
energy distribution in the disordered modes space for a particular
realization, modes are sorted so that their frequencies increase
with q.
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hEDO
q i ¼ d2Eq0!

4
q

2ð!2
q �!2

q0Þ2
hK2

q;q0i ¼
d2Eq0�

2
�!

4
q

2ð!2
q �!2

q0Þ2
: (5)

Two limit cases are of particular interest: (i) q � q0,
then hEDO

q i � d2Eq0�
2
�=2 that gives a q-independent pla-

teau energy (dashed lines in Fig. 1), and (ii) q ¼ q0 þ 1,
then hEDO

q i � d2�2
�!

2
q0ðN þ 1Þ2Eq0=2, that yields the QB

localization criterion Eq0 � Eq0þ1 if !q0D�� �
2Eq0=ðN þ 1Þ. The condition hEDO

ð2nþ1Þq0i ¼ ENL
ð2nþ1Þq0 gives

the crossover between the exponential localization and the

plateau at qc � ðln D�2
�

2ðNþ1Þ = ln�þ 1Þq0. Expression (ii) sug-
gests the ‘small’ D�� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�3=ðN þ 1Þ3p
and ‘large’

D�� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ðN þ 1Þp

disorder criteria, corresponding to lo-

calization and delocalization of all QBs. Then q�0 /ffiffiffiffiffiffiffiffiffiffiffiffiffi
N þ 1

p
separates the localized (QBs) and delocalized in

the q space (but localized in the direct space) solutions
(AMs), that agrees with [17]. Note, that parameters in
simulations correspond to the ‘‘small’’ disorder.

The linear stability of the continued periodic orbits is
determined by linearizing the phase space flow around

them and computing the eigenvalues �i, i ¼ 1; 2N of the
corresponding symplectic Floquet matrix [12]. A QB is
stable if j�ij ¼ 1, 8i. The maximal and minimal absolute
values of �i of QBs with q0 ¼ 6, N ¼ 64 for several
increasing values of D and two different f�ng are plotted
vs � in Fig. 2(a). Remarkably, while the instability thresh-
old varies monotonically with D, it may not only decrease,
but increase as well, depending on a particular f�ng.
Moreover, stabilizing realizations are common, neatly bal-
ancing destabilizing ones. The observed deviation of the
average instability threshold h��i from the disorder-free
value ��

0 was much smaller that the variance [Fig. 2(b)].

The latter grows almost linearly inD, up to ��� � 0:25��
0,

as seen for q0 ¼ 6, N ¼ 64 [Fig. 2(b); note that for larger
D the linear fit may become violated, due to the lower
bound �� > 0].

The monotonic dependence of the instability threshold
on D suggests that it is caused by the same resonance with
the modes q0 � 1 as in the disorder-free case. Let us
explore the impact of disorder on this bifurcation.
Linearizing equations of motion (2) around a QB solution

Qq ¼ Q̂qðtÞ þ 	qðtÞ, one gets
€	 q þ!2

q	q ¼ �3�!qEq0cos
2ð!̂tÞX

p

Cq;q0;q0;p!p	p

� d!q

X
p

!pKp;q	p þOð�2; �d; d2Þ: (6)

The strongest instability is due to primary parametric
resonance in (6) and involves a pair of the resonant modes
~q, ~p ¼ q0 � 1. Omitting nonresonant and Oð�2; �d; d2Þ
terms it is reduced to

€	~qþ!2
~qð1þ dK~q;~qÞ	~q ¼�3�!~q!~pEq0cos

2ð!̂tÞ	~p;

€	~q þ!2
~pð1þdK~p;~pÞ	~p ¼�3�!~p!~qEq0cos

2ð!̂tÞ	~q:
(7)

Thus, the disorder does not create new resonant terms, its
impact being confined to the QB and resonant modes
frequency shifts. The analysis analogous to [12] yields
the instability threshold ��, its mean and variance:

�� ¼ ��
0

�
1� 2dðN þ 1Þ2

�2
�K

�
; h��i ¼ ��

0;

��� ¼ 2��D
ffiffiffiffiffiffiffiffiffiffiffiffiffi
N þ 1

p
=Eq0 ;

(8)

where the disorder-free value is ��
0 ¼ �2

6Eq0
ðNþ1Þ and �K ¼

K~q;~q � 2Kq0;q0 þ K~p;~p. It agrees well with the numerical

results [Fig. 2(b)].
One may ask now, which particular realizations favor or

disfavor stability? Furthermore, can the results be used in
controlling the energy flow in the mode space? The

disorder-determined part of (8) can be rewritten as �K ¼
� 4ffiffiffiffiffiffiffiffi

Nþ1
p P

Nþ1
n¼1 �n cos

�2q0ðn�0:5Þ
Nþ1 sin2 �ð2n�1Þ

2ðNþ1Þ . It is linear with
respect to �n; thus, we can represent the latter as a sum of
spatial Fourier components, their contributions being ad-

ditive. Thus, consider �n ¼ 0:5 cosð�pðn�0:5Þ
Nþ1 þ ’Þ, where

’ is the phase shift. It is natural to expect the minimum of
�K (and the maximal gain in stability), when p ¼ 2q0, and

it indeed yields�K ¼ 0:5
ffiffiffiffiffiffiffiffiffiffiffiffiffi
N þ 1

p
cos’, and the maximum

�� ¼ ��
0ð1þDðN þ 1Þ2=�2Þ for ’ ¼ 0. Immediately, a

high sensitivity on ’ is seen: the zero shift �� ¼ ��
0 for

’ ¼ ��=2; the minimum �� ¼ ��
0ð1�DðN þ 1Þ2=�2Þ

for ’ ¼ ��. The effect of p ¼ 2q0 on adjacent QBs q
0
0 ¼

q0 � 1 is twice as small and reverse: for example, if ’ ¼ 0
then �� ¼ ��

0ð1�DðN þ 1Þ2=ð2�2ÞÞ. Remarkably, while

for p ¼ 2q0 extremal shifts correspond to ’ ¼ 0, � and
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FIG. 2 (color online). (a) The maximal and minimal absolute
values of the eigenvalues of the Floquet matrix if q0 ¼ 6, N ¼
64 for two realizations of f�ng vs the nonlinearity coefficient �.
For one realization the instability threshold in nonlinearity is
increasing with D, for another—decreasing. (b) Empty markers,
dotted line: dependence of the variance of the instability thresh-
old ��� on the disorder strength. Solid lines are theoretical

estimates (8). Filled markers: h��ðDÞ � h��ð0Þi.
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zero ones to ’ ¼ ��=2, for p ¼ 2q0 � 1 the zero shift
appears for ’ ¼ 0, �, and the extrema for ’ ¼ ��=2:
�� ¼ ��

0ð1	 8DðN þ 1Þ2=ð3�3ÞÞ.
These results are illustrated in Fig. 3, and show a good

correspondence to the numerically determined QB stabil-
ity. That is, depending on the phase ’, the spatially har-
monic modulation of springs elasticities with the wave
number p ¼ 2q0, may significantly augment, weaken, or
leave the stability intact [Fig. 3(a)]. Modulations with p ¼
2q0 � 2 change the stability reversely and with twice a
smaller amplitude for the same ’, and those with
p ¼ 2q0 � 1—just a bit weaker than 2q0, but with a �=2
shift in ’ [Fig. 3(b)]. Notably, modulations with other
wave numbers have only a minor effect. Therefore, the
spatial Fourier components of f�ng with p 2 ½2q0 �
2; 2q0 þ 2� are decisive for the q0-QB stability.

These findings suggest a possibility of controlling the
energy flow between modes. For example, imposing a
proper periodic modulation of the linear elasticity one
can destabilize certain QB excitations and (i) promote
equipartition or (ii) stabilize others, where the energy
will be radiated; new QBs may also be subject to the
same procedure to arrange the further energy flow.
Experimentally, elasticity modulations could be achieved,
for example, by laser heating, either as harmonic or spot
impurities, like it was designed to control discrete breath-
ers location in cantilever arrays [9].

In conclusion, we have demonstrated, that the concept of
QBs can be successfully applied to analyzing nonlinear
vibrational modes in weakly disordered lattices. They es-
sentially retain exponential localization and stability in the
mode space, if the disorder is sufficiently small. We show,
that the stability trend depends sensitively on a particular
realization of disorder, and deliberately created inhomoge-
neities offer a promising technique of controlling the en-

ergy flow between nonlinear modes. We expect that these
ideas and methods to be applicable to a variety of nonlinear
weakly disordered lattices—and we have already applied
them to the DNLS chain (to be reported elsewhere)—
including the contexts of a different source of disorder
(masses, nonlinearities), higher dimensions, and quantum
lattices. The results on the nonlinear modes sustainability,
stability, and controlling are strongly expected to be in
demand from experiments and applications. Another pos-
sibility is to develop the theory of QBs in the AMs space to
target the localized wave packet spreading problem.
We thank S. Flach for stimulating and extremely valu-

able discussions.
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FIG. 3 (color online). QB stability in case of spatially har-
monic modulations: N ¼ 32, D ¼ 0:0025 and (a) p ¼ 10, the
central mode q is changed, (b) the central mode q ¼ 8, the
modulation wave number p is varied. Dashed lines are theoreti-
cal estimates.
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