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A basic micromechanical model for deformation of solids with only one tuning parameter (weakening
) is introduced. The model can reproduce observed stress-strain curves, acoustic emissions and related

power spectra, event statistics, and geometrical properties of slip, with a continuous phase transition from
brittle to ductile behavior. Exact universal predictions are extracted using mean field theory and
renormalization group tools. The results agree with recent experimental observations and simulations
of related models for dislocation dynamics, material damage, and earthquake statistics.
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Plastic and brittle deformations of solids have been
studied in various scientific disciplines for more than a
century, and many important results have been obtained
in the past [1]. Initially plastic deformation was modeled as
a smooth, continuous deformation of nominally homoge-
neous materials. However, recent experiments [1,2] on
small nickel crystals and other materials reveal steplike
stress-strain curves with broad power-law-distributed dis-
location slip avalanches and the formation of slip-bands on
the sample surface. The power law relationship between
frequency and event size has been shown to be material
independent (i.e. “‘universal’’). The same is true for the
geometric roughness of slip surfaces and related quantities.
The process looks remarkably similar to the brittle defor-
mation of the earth’s crust with Gutenberg Richter power
law statistics of earthquake sizes and fractal-like fault net-
works [1-3]. To quantify the analogies, we introduce a
basic micromechanical model with threshold dynamics for
deformation in crystals, which shows richer dynamics than
many traditional continuum models. An important advan-
tage of this model is that it has very few ingredients and yet
is able to provide exact quantitative predictions for univer-
sal scaling properties that correctly reproduce many essen-
tial features of the dynamics. Using only one tuning
parameter (weakening €), it yields a surprisingly general
understanding of the universal long length scale behavior
of multiple types of deformation responses (brittle, ductile,
or hardening) seen in laboratory experiments. Another
advantage is that it provides exact analytical results and
quantitative predictions for universal scaling forms, expo-
nents, and functions that can be measured in experiments.
Tools from the theory of phase transitions and the renor-
malization group are used to calculate exact material in-
dependent (universal) scaling predictions for a large range
of scales: scaling results for stress-strain curves, noise
power spectra, slip pulse size, duration distributions, and
geometrical properties are computed exactly for two differ-
ent types of boundary conditions (a slowly increasing
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applied shear stress or a small fixed tangential boundary
velocity). For slowly increasing applied shear stress the
results agree with recent experiments and simulations [1].
New experiments are suggested to test new exact predic-
tions. For the fixed velocity boundary condition, the model
results agree with those for two related earthquake models
[4,5]. The discussed framework thus represents a general-
ization of recent models for dislocation dynamics [1] and
may be used to understand the similarities and differences
between models for deformation of solids and models for
earthquake dynamics.

The model.—Consider a three-dimensional block of ma-
terial that deforms under shear. On a large scale it may
represent an entire crustal region, without a preexisting
dominant crack or fault [5]. Two different boundary con-
ditions are applied:

(I A slowly increasing shear stress F' applied to the
boundaries, or

(II) A small tangential velocity v imposed at the
boundaries.

The local medium behaves elastically until the static
local failure stress 7, is exceeded. It then undergoes a
local slip until the local shear stress is reduced to a lower
arrest stress 7, . (“‘sticking stress”). 7, . and 7, , may vary
with position r, due to disorder in the system, such as
stepovers, asperities in earthquake systems, or impurities
and crystal imperfections in metals. The exact shape of
their distribution does not affect the universal scaling
results reported below. In the following we set 7,, =0
and assume a narrow parabolic distribution for 7, [4].
After the medium sticks back together it locally acts elas-
tically until the local stress again exceeds the current fail-
ure stress, which may have changed since the initial slip via
weakening or strengthening. Each slip produces an uniso-
tropic redistribution of elastic forces that fall off roughly as
1/D? (or 1/D? in two dimensions) with the distance D
from the slip location. The stress redistribution takes place
with the speed of sound, i.e., much faster than the (lab or
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geological) time scale involved in the buildup of the stress.
The slip at one point may increase the stress at other points
enough to cause them to slip as well, and thus lead to an
avalanche of slip instabilities, which is the analogue of an
earthquake on crustal scales. An avalanche stops when at
each point in the system the stress is lower than its current
failure stress. The size s of each avalanche is quantified by
its potency, which is the integral of the slip distance over
the failure area [6]. A given slip location may experience
more than one slip during an avalanche. For brittle mate-
rials, we assume that after a point r slips for the first time
during an avalanche, the failure threshold at that location
will be weakened from the static value 7, to a diminished
value 7, , with 7, . < 7,, < 7, ,. The failure stress remains
at 7, for the secondary and all later slips during the same
avalanche. The amount of weakening is given by the
weakening parameter ¢ = (7,, — 74,)/7,, [7]. After the
completion of an avalanche all diminished failure stresses
are reset to their initial static values 7 ,. In contrast, for
hardening materials we assume that each slip event during
an avalanche leads to a strengthening of all other failure
thresholds by an amount proportional to |&|/N, where & <
0 and N is the volume of the system, to model the local
energy absorption due to dislocation pair creation, entan-
glement, etc. [1]. For initial analysis, we study the scalar
version of this model, which describes a crystal with
parallel straight edge dislocations extended in the z direc-
tion. In this case, slip events are local tears in the crystal
structure. They are either due to the creation of dislocation
pairs (““dipoles™) or dislocation motion along the shear
direction x. The local displacement discontinuity u(r, 7)
across the slip surface [4] (parallel to the xz-crystal plane),
is constant along the z direction, and is related to the
number of dislocations that have moved past point r =
(x, y) by time .

Justification for the use of mean field theory.—We use
the general equations of motion [4]:

nou(r, 1)/t = F + oy, (v, 1) — frlu, v, {ulr, { < 1)}]
(D

where

i1, 1) = [t dt’[dzr’J(r —r,t—17)
X [M(I", t) — u(r, t)] )

is the shear stress accumulated at point r at time ¢ due to
elastic stress transfer from all previous slips in the solid
since time ¢ = O when the system started in a relaxed state.
Using scalar elasticity, F is the applied shear stress in the x
direction (corresponding to o, in tensor elasticity).
Equation (1) provides a general description of particle
motion in an environment (e.g., elastic solid) with distrib-
uted rather than concentrated mass [1]. f represents the
quenched random “pinning” stress, that prevents slips
until the local stress exceeds the local failure threshold,

as discussed above. A renormalization group analysis of
the model shows that the coupling between slips due to
dislocation motion is so long range [J(r) = [dtJ(r, 1) ~
r 2 for parallel straight edge dislocations] that mean field
theory (MFT) gives the correct scaling behavior in all
dimensions for ¢ = 0 or € close to zero. This agrees with
a conjecture mentioned in [1] for a different model. In
MFT the coupling is replaced by a function that is constant
in space: J(r) = J/N and all spatial dependence is lost. For
slow driving the problem reduces to the same mean field
theory as that of the Ben-Zion and Rice (BZR) model for a
single fault driven with slow velocity boundary
condition (II). The long term model behavior (i.e., for
long enough time so that all memory of the initial con-
ditions is lost) is discussed in [4,7-9]. To summarize, the
main parameters of the model are as follows: €, the bound-
ary conditions, 7 ,, 7, , and their distributions, the values
of 1 and elastic constants, and the form of J(r, 7). Among
these, only &, the range of J(r, r) and the boundary con-
ditions affect the universal aspects of the behavior on long
length scales.

Exact results for a slowly increasing applied shear stress
F.—In a discrete version of MFT with N lattice points, the
local stress 7, at a lattice point € is given by 7, =
J/NZ,,(u,, — ug) + F [8]. Each point fails when the stress
is bigger than the local failure threshold (slip stress) 7/, =
7,¢ (or 7,¢). When site € fails, it slips by a certain amount
Aug resulting in a stress reduction 7, — 7, ~ 2G Aug
where G ~ J is the elastic shear modulus.

For zero weakening (¢ = 0, 75 ¢ = 7,¢).—Starting from
a relaxed (zero stress) state, the external stress F is in-
creased, and the system approaches a ‘“‘depinning transi-
tion” at the critical yield stress F., which has been studied
previously in other contexts [4,10,11]. The stress-strain
curve for this case is shown in Fig. 1. (Here the strain is
proportional to 3,,u,,). For a slowly increasing F < F ., the
solid responds with slip avalanches (strain steps) of size s
(potency per volume) that lead to acoustic emission. At the
yield stress F., the distribution D(s, F,.) of slip avalanche
sizes follows a universal power law D(s, F,.) ~ 1/s™ with a
universal critical exponent 7 = 1.5. Below but close to F .,
the distribution follows the same power law up to a maxi-
mum size Sy, ~ (F. — F)'/?, with a universal exponent
o = 0.5. This is reflected by the large s scaling form:
D(s, F) ~1/s"D[s - (F. — F)"/?] with universal cutoff
scaling function D(x) ~ Aexp(—Bx). The constants A
and B are nonuniversal. The local slope of the stress-strain
curve (the effective shear modulus G) is inversely propor-
tional to the mean avalanche size (s); i.e., it scales as G ~
1/(s) ~ (F, — F)®~7/7 ~(F, = F) [1,10].

Above yielding (F > F ) all points keep slipping with a
mean slip rate that scales as d(u)/dt ~ (F — F,)? with a
universal exponent 8 = 1 [11]. The above analytical pre-
dictions agree with simulation results of a slightly different
model for dislocation dynamics [1].
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FIG. 1 (color online).  Stress-strain curve for ¢ = 0 in MFT for
slowly increasing applied shear stress. The two insets show log-
log plots of the avalanche size distribution D(s) and the power
spectrum P(w): the four size distributions arranged from left to
right and the power spectra arranged from bottom to top are
obtained from four different, narrow stress windows that are
centered around stresses 0 < F| < F, < F3 < F, = F, respec-
tively. Note how both D(s) and P(w) approach power law scaling
as F— F.

At F, we predict the slip-rate power spectra P(w, F,)
[i.e., the absolute square of the Fourier transform of the
time dependent slip rate d(3,,u,,)/dt] to scale with fre-
quency w as P(w, F,) ~ o 2. For F < F, the power law
levels off at frequencies below a cutoff w;, ~ (F, — F)¥*
with vz = 1. This is captured by the functional form
P(w, F) ~ o *fcn[w/(F. — F)] where fcn(x) is a univer-
sal scaling function. The insets of Fig. 1 show D(s, F) and
P(w, F) at various stresses F. Note the respective power
law scaling regimes with crossover to a stress dependent
large avalanche cutoff and a low frequency cutoff for
D(s, F) and P(w, F), respectively [10]. Predictions can
also be made for the roughness on the surface of the
deforming material and for the average amount of slip at
a slipping site (u), for an avalanche of size s: {u), ~
s¢7v ~ 59 since £ =0 [1,4]. The distribution of ava-
lanche durations T is expected to scale as D(T) ~
1/T*D[T(F, — F)¥*] with @« =2, vz =1, and D(x) a
universal scaling function. For € = 0 the slip in the system
is, on average, distributed uniformly over the sample (duc-
tile deformation). Simulations of the slip distribution of
two similar models [1,5] indicate that the average propa-
gation direction of individual slip avalanches tends to be
parallel to the shear direction. Chen et al. [5] conjectured
that adding weakening to their model would lead to slip
localization.

Results for weakening (with € >0, 7, > 74).—For
€ > 0 we find scaling behavior similar to the £ = 0 case
prior to macroscopic failure. Here the deformation mode is
different and is associated with brittle failure. Starting from

a relaxed state, initially the material responds to an in-
creasing shear stress F' < F,(g) with small avalanches, just
as in the € = 0 case. Their sizes are power-law distributed
up to a stress dependent cutoff size sy, ~ & >S((F, —
F)/€). They are nucleated randomly throughout the system
and thus lead, on average, to a uniform strain distribution
across the sample, similar to the situation for zero weak-
ening. The scaling form of the avalanche size distribution
in this regime, for example, is given by D(s) ~ 1/s™D,,[s -
(F.— F)Y/7, 5-&?], with the same values 7= 1.5 and
1/o = 2 as in the zero weakening case. The yield stress
F.(g), is of order & lower than the yield stress F.. for e = 0
[4]. At F.(e) = F. — O(e) the material breaks in brittle
failure; i.e., the slip suddenly localizes in a system span-
ning avalanche that forms a narrow weakened failure or
“fault zone.” The shear modulus just before failure is G ~
O(e). The system undergoes a discontinuous (first order)
transition at F,.(g). (Note that MFT may not capture cor-
rectly the detailed behavior in the brittle case just before
localization when the dislocation density is very high in the
localization region. Clarifying these details is subject of
future numerical work.) After the system spanning fracture
avalanche took place, continuous slip can be maintained at
stresses that are O(e) less than the yield stress F.(g). The
corresponding stress-strain curve is shown in Fig. 2(a).
Results for slip hardening (with € <0, 730> 7,0).—
Hardening can be introduced in this model in the following
way: if a site slips the failure threshold of all other sites is
either increased by an amount proportional to |e|/N, or
equivalently, the stresses at all cells are reduced by an
amount O(g/N) [9]. In crystals, this global stress reduction
or threshold strengthening may be due to the creation of
dislocation pairs in the bulk that reduce the overall stress.
This can lead to dislocation entanglement, so that higher
stress than in nonhardening systems is needed to trigger
further events [12]. From the general discussion of hard-
ening in [1] we conclude that |e|/N is proportional to the
hardening coefficient 6 of the material. Starting from a
relaxed state, for slowly increasing shear stress F, the
system first responds with small avalanches, like in the ¢ =

stress
a stress
N (a) N (b)
Fe(e)
} ~e
>
strain strain

FIG. 2. Stress-strain curves for € >0 [(a) brittle] and € <0
[(b) hardening] as obtained from MFT.
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0 case. During a transient regime, their size distribution
D(s, F, g) follows the power law 1/s7 (with 7 = 1.5) up to
a cutoff size that increases with F. For larger stresses,
hardening effects come into play and the system crosses
over into a “‘steady state” regime with a power law distri-
bution of avalanche sizes that is cut off at maximum size
Smax ~ 1/&2,i.e. D(s, F, &) ~ 1/5"D,,(s - &%) with univer-
sal exponent 7 = 1.5 as before. As illustrated in Fig. 2(b),
the slope of the stress-strain curve scales [1] as G ~
1/{s) ~ |e|. In this regime the strain-rate power spectrum
P(w, F, &) scales as P(w, F, &) ~ 1/w? for high frequen-
cies, with a low frequency cutoff w,;, ~ €, i.e., the scaling
form is given by P(w, F, &) ~ w ?P,(w/€). P, is a uni-
versal scaling function. In the hardening regime, just as in
the case for € = 0, there is no slip localization, and the
cumulative effect of all randomly nucleated avalanches is a
distributed deformation of the solid.

Results for a small tangential velocity applied to the
boundaries.—For this case, the mean field theory of the
model becomes exactly as found for the BZR single fault
earthquake model. It shows Gutenberg Richter (GR) power
law statistics for € = 0, characteristic earthquake distribu-
tion (with runaway events) for € > 0, GR statistics with
aftershocks for £ <0, and mode switching between GR
and characteristic earthquake distribution in a certain pa-
rameter regime for £ <0 and in the absence of stress
conservation [4,7-9].

Conclusions.—We have introduced a basic discrete
model for solid deformation under two boundary con-
ditions. For the case with applied shear stress, it is possible
to tune the system by changing only one parameter (the
weakening ¢) from brittle (¢ > 0), to ductile (¢ = 0),
and hardening (e < 0) behavior. A continuous phase tran-
sition at & = 0 separates brittle from hardening be-
havior. In the hardening phase the slip is on average
uniformly distributed throughout the sample. In the brittle
phase this holds only in the early deformation phase,
before the slip localizes in a macroscopic failure event
leading to breaking of the sample into two pieces. Our
exact results for the universal scaling exponents char-
acterizing this transition agree with recent experiments
that found, for example, 7 = 1.5 [1,2]. Many of the pre-
dicted universal exponents and scaling functions com-
puted in this Letter are yet to be measured in experi-
ments. We find that the transition belongs to the same
universality class as recently simulated models for dis-
location dynamics, material damage, and earthquake

statistics [1,4,5,7]. For slowly moving boundaries, the
model displays the same behavior as the BZR earthquake
model for a single heterogeneous fault that produces a
variety of realistic results compatible with observations
[4,7,8].
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