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Microbunching of a relativistic electron beam into a helix is examined analytically and in simulation.

Helical microbunching is shown to occur naturally when an e beam interacts resonantly at the harmonics

of the combined field of a helical magnetic undulator and an axisymmetric input laser beam. This type of

interaction is proposed as a method to generate a strongly prebunched e beam for coherent emission of

light with orbital angular momentum at virtually any wavelength. The results from the linear micro-

bunching theory show excellent agreement with three-dimensional numerical simulations.
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A relativistic electron beam (e beam) that is subject to
the free-electron laser (FEL) instability becomes micro-
bunched in density and velocity at the resonant interaction
wavelength, and at harmonics. The modulated e beam can
then be used to emit radiation in various kinds of radiation
schemes that preserve the characteristic frequency and
geometry of the microbunching in the e beam. In general,
the microbunching interaction generates a purely longitu-
dinal modulation, such that the subsequent radiative pro-
cess produces emission at, or near, the fundamental
transverse optical mode. The range of modulation wave-
lengths obtainable in modern devices make this technique
appealing for the generation of light with wavelengths that
span many orders of magnitude. However, in some cases
one may wish to produce radiation with the modulated
beam that has a specific higher-order phase or intensity
structure. Depending on the emission process, the e beam
must be prepared with the correct microbunching structure
in the modulator. Here we examine a simple modulator
arrangement that generates a helically microbunched e
beam, such that the electrons are arranged in a helix (or
multiply twisted helices) about the longitudinal axis. Such
a beam can be used for generation of coherent light that
carries orbital angular momentum (OAM) as a result of the
imprinted helical e beam density distribution on the optical
phase.

Light that carries OAM is a subject of intense research
for a myriad of applications [1–5]. Coherent OAM modes
allow the possibility of light-driven micromechanical de-
vices or the use of torque from photons as an exploratory
tool [6]. Laguerre-Gaussian (LG) modes of free-space
propagation are of particular interest since they are known
to possess a well-defined value of angular momentum l@
per photon due to an azimuthal component of the linear
momentum [7]. Emission of OAM light with an e beam
may be accomplished through a variety of radiation pro-
cesses, including harmonic emission from an FEL [8] or

through coherent transition radiation [9] or superradiant
FEL emission [10,11] with helically microbunched beams.
Modes of this type may be particularly relevant for study
with modern optical and next-generation x-ray FELs with
the ability to probe the structure of matter down to Å length
and attosecond time scales. For future FEL light sources,
the ability to directly generate intense higher-order LG
modes in situ would further extend the experimental and
operational capabilities.
In this Letter, we propose a scenario for generating a

helically microbunched e beam which utilizes harmonic
coupling in a helical undulator. We show that microbunch-
ing of this type may be easily performed with an axisym-
metric EM seed input in the modulator section of an optical
klystron [12]. The helical beam can then be used as a
source of OAM radiation in a downstream radiator. A
linear analysis of the harmonic bunching process is devel-
oped in which the input field and density modulation are
treated as superpositions of orthogonal modes [13,14], and
the beam couples at harmonics via field gradients in the
input laser beam. Simple symmetry arguments are em-
ployed to clearly delineate the spatial dependence of the
harmonic fields that couple to the e beam. The method also
illustrates the geometric structure of the resonant phase for
arbitrary harmonics, the mode coupling for a cylindrically
symmetric e beam, and the resulting density and velocity
modulations excited in the e beam during the interaction.
Selection rules are also derived for coupling between
azimuthal modes in the e beam (l) and in the field (l0) at
harmonics (h). These rules apply both to the modulator
setup described here and to harmonic radiation in a FEL
with a cold beam.
The interaction between the e beam and the input radia-

tion field in an undulator operating as a buncher can be
described analytically using standard linearized FEL equa-
tions in the small-signal regime if the radiation fields are
injected with sufficient power (or the interaction length is
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short enough) that the total field energy is unaffected by the
e beam throughout interaction. The fields are assumed to
be dominantly transverse. The electric field is given by the
modal expansion

E?ðr; tÞ ¼ Re

�X
q

CqðzÞ~E?qðr?Þê?ei½kzqð!Þz�!t�
�
; (1)

where ~E?q is an eigenfunction of an infinite, ideal wave

guide (or optical fiber), CqðzÞ is the mode amplitude, ê? is

the field polarization vector and kzqð!Þ is the axial wave

number of the mode q at the frequency!. The TEMmodes
are orthogonal and normalized, with mode power

Pq�q;q0 ¼ ðkzqð!Þ=2�0!ÞRe½R ~E?q
~E�
?q0d

2r?�, where

�0 ¼ 1=c2�0 is the permeability of free-space. The total
power in the input field is then PT ¼ P

qjCqð0Þj2Pq.

The e beam is described in a linear fluid model with
density distribution

nðr; tÞ ¼ n0fðr?Þ þ Re½n1ðrÞei!ðz=v0�tÞ�; (2)

where n0 is the electron density, v0 ¼ �zc is the longitu-
dinal e beam velocity, fðr?Þ is the transverse density
profile of the e beam and n1ðrÞ is the spatial density
perturbation. The transverse variation of the charge density
is assumed small compared with the longitudinal variation.
With the Lorentz force equation for a single component
plasma fluid in the presence of both the magnetostatic

undulator field Bw ¼ Refj ~Bwjêwe�ikwzg and the electro-
magnetic input fields [Eq. (1)], the density evolution equa-
tion in the cold-beam limit is written as [10]

�
@2

@z2
þ �2pfðr?Þ

�
n1ðrÞ ¼ �ĝ?�2pfðr?Þ �0cK2�e!

X
q0
Cq0 ðzÞ

� ½kzq0 þ kw�2~E?q0 ðr?Þe�i�ð1Þ
q0 z;

(3)

where �p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2n0=��

2
z�0mev

2
0

q
is the relativistic longitu-

dinal plasma wave number and �ðhÞ
q0 ¼ !=v0 � ðkzq0 ð!Þ þ

hkwÞ is the detuning of the input mode relative to the e
beam energy at the harmonic h. The harmonic frequencies

at resonance are !ðhÞ ¼ 2hkwc�
2
z , with �2

z ¼ ð1� �2
zÞ�1,

�2 ¼ �2
zð1þ K2Þ, K ¼ ej ~Bwj=meckw is the undulator pa-

rameter, j ~Bwj is the field amplitude of the undulator and
�w ¼ 2�=kw is the undulator wavelength. We neglect the
nonlinear contribution of the input field in the small-signal
approximation ðKf=KÞ2 � 1 where Kf ¼ ejE?j=!mec.

Polarization alignment between input EM field and the
electron motion in the undulator is given by ĝ? ¼ ê? �
ðêz � ê�wÞ, where the polarization vector of the helical
undulator is

ê w ¼ ðêx � iêyÞ=
ffiffiffi
2

p
; (4)

which corresponds to either right (þ) or left (�) circular
polarization along z. Maximal coupling from polarization

alignment (ĝ? ¼ 1) is obtained when the optical field
polarization is ê? ¼ êz � êw which describes a left-
circularly polarized wave (positive helicity [15]) matched
with a right-circularly polarized undulator.
The e beam is coupled to the input field modes through

the ponderomotive fields, given by the right-hand side
of Eq. (3). Since the resonant interaction is sustained
near the synchronous condition only for the first harmonic

(�ð1Þ
q0 ’ 0), there is no higher-harmonic coupling of the

electron beam to first order. Coupling at higher harmonics
can be excited in a cold beam through the higher-order
resonant interaction between the electrons and the gra-
dients of the EM fields. This contribution is calculated by

Taylor expanding the field modes ~E?q about the average

centroid trajectory of an electron �r?,

~E ?qðr?Þ ¼
X1
n¼0

1

n!
½Reð~r?we

�ikwzÞ � �r�n~E?qð�r?Þ; (5)

where the transverse coordinate of an electron is r? ¼
�r? þ Re½~r?we

�ikwz� and �r is the gradient operator which
acts on �r?. The electron wiggling amplitude is ~r?w ¼
ðK=kw��zÞêz � êw. Insertion of Eq. (5) into Eq. (3) in-
troduces additional oscillatory wiggling terms which
couple to higher-harmonic resonances. In the regimewhere
j~r?wj is much smaller than the characteristic transverse e
beam size r0, we approximate �r? ’ r? in Eq. (5) and
obtain an expression for the Taylor expanded harmonic
field components that are resonant with the integer har-
monics h,

~EðhÞ
?qðr?Þ ¼ e�iðh�1Þ	

�
@r � i

r
@	

�
h�1 X1

m¼0

ð�1Þm
m!ðmþ h� 1Þ!

�
� �iK

2
ffiffiffi
2

p
kw��z

�
2mþh�1r2m

? ~E?qðr?Þ; (6)

where r2
? ¼ 1

r @rðr@rÞ þ 1
r2
@2	 is the transverse Laplacian

operator. The higher-order terms (m> 0) in the Taylor
series can be neglected if the wiggle amplitude of the elec-
trons is small compared to the optical beam size. With
Eq. (6), harmonic interactions are described in Eq. (3) by

replacing ~E?q0 ðr?Þe�i�ð1Þ
q0 z with ~EðhÞ

?q0 ðr?Þe
�i�ðhÞ

q0 z.

It is convenient to express the density perturbation n1ðrÞ
as a sum over the expansion eigenmodes such that the
orthogonality of the basis can be used to compactly write
the density evolution Eq. (3) in terms of spatial modulation
amplitudes. The density modulation expansion is,

n1ðrÞ ¼ kw�0
e

X
j

ajðzÞ~E?jðr?Þ: (7)

The substituted harmonic terms in Eq. (3) are then multi-

plied by ~E�
?qðr?Þ and integrated over the transverse coor-

dinates, yielding an expression for the evolution of the
density mode amplitudes at harmonics:
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d2

dz2
aqðzÞ þ �2p

X
j

Fq;jajðzÞ ¼ �X
q0
DðhÞ

q;q0Cq0 ðzÞe�i�ðhÞ
q0 z:

(8)

The coupling of the e beam with arbitrary transverse
density distribution fðr?Þ to the harmonic fields is given
by the coupling coefficient

D ðhÞ
q;q0 ¼ ĝ?

�2pcK½kzq0 ð!Þ þ kw�2
2�!kw

FðhÞ
q;q0 (9)

and the overlap of the e beam and the input fields is

F ðhÞ
q;q0 ¼

R
fðr?Þ~EðhÞ

?q0 ðr?Þ~E�
?qðr?Þd2r?R j~E?qðr?Þj2d2r?

; (10)

where Fq;j ¼ Fð1Þq;j with m ¼ 0 in Eq. (6). Equation (8)

describes the density bunching evolution of the e beam at
the harmonics with arbitrary initial conditions on the
bunching aqð0Þ, velocity modulation daqð0Þ=dz and input

field amplitudes Cqð0Þ. The second term on the left hand

side of Eq. (8) is the contribution of the longitudinal space

charge. Note that with the coupling turned off (DðhÞ
q;q0 ¼ 0),

Eq. (8) describes the coupled harmonic oscillations of the
density modes due only to longitudinal space-charge ef-
fects. This effect can become important, especially at lower
energies, and may be useful for calculation of the density
and velocity bunching amplitudes of the e beam over a drift
before or after the undulator.

The coupling selection rules and resulting e beam mod-
ulations [Eq. (7)] that are excited in the interaction with a
harmonic field input mode can be examined with a basis
with the form

~E ?qðr?Þ ¼ Rl
pðrÞeil	; (11)

where the mode index takes on two values, q ¼ ðp; lÞ
corresponding to the radial (p) and azimuthal (l) modes.
Assuming an axisymmetric e beam profile fðr?Þ ¼ fðrÞ,
the integral over 	 in Eq. (10) is straightforward,

F ðhÞ
ðp;lÞ;ðp0;l0Þ / 2��l0;l�ðh�1Þ: (12)

This shows how the coupling between azimuthal density
modulation modes in the e beam, l, and the azimuthal
modes in the EM field, l0, depend on the harmonic number
h and the direction of undulator polarization, �. In the
simple case of an input EM mode with arbitrary l0 intro-
duced to the undulator at the fundamental frequency (h ¼
1), the corresponding azimuthal mode l ¼ l0 is excited in
the e beam. At the second harmonic frequency (h ¼ 2), the
axisymmetric EM field mode l0 ¼ 0 will generate a heli-
cally bunched e beam with azimuthal mode number l ¼
�1 for an RH undulator and l ¼ 1 for an LH undulator.
Thus, an initially axisymmetric e beam and axisymmetric
input EM field mode can be used to produce a helically
microbunched e beam at the second harmonic (Fig. 1). It is
interesting to note that the slowly varying amplitudes of the

helical density distribution suggest an intriguing analogue
with the manifestation of the Berry phase along the azimu-
thal coordinate [16,17].
The e beam density bunching is parametrized by the

bunching factor [18]. To accommodate helical bunching of
the e beam, we define a modified bunching factor blðzÞ
which incorporates the amplitude of bunching due to the
lth discrete azimuthal mode:

blðzÞ ¼ 1

n0
R
fðr?Þd2r?

Z
n1ðrÞe�il	d2r?: (13)

This gives blðzÞ ¼ �l;0 when the density perturbation is

n1ðrÞ ¼ n0fðr?Þ, i.e., complete longitudinal bunching at
the l ¼ 0 e beam mode. Helical e beam density bunching
curves at the second harmonic are shown in Fig. 2 for three
different values of the total input power of an l0 ¼ 0

Gaussian free-space mode at 2�c=!ð2Þ ’ � ¼ 10:6 �m.
In each case, there is good agreement between the solu-
tions to Eq. (8) with an LG basis [10] and 3D numerical
particle tracking simulations performed with TREDI [19]

FIG. 1 (color online). Buncher device where the axisymmetric
input field imprints a helical density and velocity modulation on
the e beam through the harmonic interaction in a helical undu-
lator.

FIG. 2 (color online). Injection of a Gaussian input mode onto
a Gaussian e beam for a RH undulator excites l ¼ �1 density
bunching at the second harmonic (� ¼ 10:6 �m). The associ-
ated helical bunching curves for a 350 �m spot size Gaussian
mode with waist at z ¼ 0:15 m on a r0 ¼ 350 �m e beam are in
good agreement with TREDI simulations (points) with � ¼ 26,
K ¼ 0:65, �w ¼ 2 cm.

PRL 102, 174801 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending
1 MAY 2009

174801-3



for dominant bunching at the l ¼ �1 density mode.
Significant bunching is observed near the exit of the
35 cm RH undulator with only 15 MW of input power.
Bunching into modes l � �1 is negligible. Note that the
analytic description assumes r0 	 j~r?wj but still works
well in this case where r0 
 5j~r?wj. The departure of our
linear theory from simulations (which include nonlinear
aspects) is evident for very large bunching (jblj> 35%), as
in the case of 125 MW of input power.

The effects of space charge are ignored in Fig. 2, but can
play a crucial role in the evolution of the microbunching.
Figure 3 includes space-charge effects in the case of injec-
tion of l0 ¼ �1, l0 ¼ 0, and l0 ¼ 1 free-space LG modes
with a Gaussian e beam in a RH undulator. The corre-
sponding axial velocity modulation modes (l ¼ �2, l ¼
�1, and l ¼ 0 modes excited in the e beam, respectively)
manifest in the growth of the bunching factors downstream
of the 20 cm undulator, which reach a maximum and then
decrease due to space charge.

Maximum peak microbunching is achieved with the
injection of the ‘‘natural’’ l0 ¼ 1 field, which bunches the
beam into the l ¼ 0 mode, i.e., longitudinally separated
microbunches (b0). This l

0 ¼ 1 optical mode excites larger
bunching than the other modes at the 2nd harmonic be-
cause it has larger resonant coupling to the e beam. This
relates directly back to the 2nd harmonic FEL scenario
where this optical mode achieves the highest gain [8]. In
general for FELs with this coupling, a helical undulator
with right (left) circular magnetic field polarization ampli-
fies an l0 ¼ h� 1 (l0 ¼ 1� h) azimuthal mode with left
(right) circular polarization. The spin and orbital compo-
nents of the photon angular momentum in the emitted
photons in the FEL add since the projection of each onto
the axis of propagation has the same sign. The jl0j> 0 EM

modes described here are characterized by a null intensity
on-axis, as expected [20–22]. Generation of intense light
with OAM by helical beams in FELs is the subject of more
detailed future work, and should include transverse beta-
tron motion and emittance effects beyond the cold-beam
model presented here.
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FIG. 3 (color online). Longitudinal space-charge effects in-
cluded in bunching evolution for the injection of l0 ¼ �1, 0,
and 1 modes onto a Gaussian e beam for a RH undulator at h ¼
2. The optical spot size is 500 �m for each mode, with the waist
positioned halfway through the 20 cm undulator (vertical line).
The beam displays the onset of plasma oscillations downstream.
Input power is 15 MW and the e beam current is 300 A with
� ¼ 26, K ¼ 0:65, �w ¼ 2 cm.
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