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We study numerically and experimentally the dynamics and control of viscous fingering patterns in a

circular Hele-Shaw cell. The nonlocality and nonlinearity of the system, especially interactions among

developing fingers, make the emergent pattern difficult to predict and control. By controlling the injection

rate of the less viscous fluid, we can precisely suppress the evolving interfacial instabilities. There exist

denumerable attractive, self-similarly evolving symmetric, universal shapes. Experiments confirm the

feasibility of the control strategy, which is summarized in a morphology diagram.
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A variety of pattern forming phenomena, ranging from
the growth of bacterial colonies to snowflake formation,
share similar underlying physical mechanisms and mathe-
matical structure. Viscous fingering, considered here, is a
paradigm for such phenomena. Dense-branching or den-
dritic morphologies are among the most common forms of
microstructural patterning in systems driven out of equi-
librium [1–3]. The interest in understanding the formation
kinetics and the interplay of system parameters is to pro-
vide understanding of growth and form in nature as well as
to achieve improved control and efficiency in a variety of
physical, biological, and engineering systems. Prediction
and control of the shape of emergent patterns are both
difficult due to the nonlocality and nonlinearity of the
system.

In a Hele-Shaw cell [4], Saffman and Taylor [5] dem-
onstrated, using linear stability theory, that when air is
injected into a viscous fluid at a constant pressure or
injection rate, the interface becomes unstable and develops
a fingered pattern. Though surface tension suppresses the
growth of perturbations, linear theory predicts that succes-
sively higher wave number perturbations become unstable
as the air bubble grows (see Fig. 1). Nonlinear interactions
among different modes then become important and the
nonlinear evolution leads to the usual dense-branching
morphologies [5–13].

In a theoretical study of viscous fingers in 90� sector
geometry, Brener et al. [14] suggested that if the injection

rate instead scales with time like t�1=3 it may be possible to
obtain self-similar growing single fingers for finite surface
tension, thus avoiding the dense-branching morphology

regime. Indeed, this is the unique scaling for which non-
linear self-similar evolution can be obtained [14–16].
Sector geometries, introduced in experiments by Thome
et al. [17], are a generalization of the channel geometry
with parallel walls [5]. Growth of fingers in the sector

FIG. 1 (color online). Numerical simulation of a highly rami-
fied bubble in the nonlinear regime expanding under a constant
flux. A time sequence of bubble shapes is shown that tend
towards a dense-branching morphology. This is the largest and
most pronounced viscous fingering simulation to date and uses
the algorithm developed by Li et al. [13].
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geometry mimics the growth in a circular geometry in the
special case that the fingers do not interact. In a range of
sector geometries, Tu [18] obtained analytic solutions for
zero-surface tension fingers and used the WKB perturba-
tion method to investigate the effect of small surface
tension and finger selection. Combescot and Ben Amar
[15] and Ben Amar et al. [19] found numerically self-
similar divergent (and convergent) fingers with finite sur-
face tension.

In this Letter, we consider the full circular geometry

under the t�1=3 scaling of the injection rate and investigate
the pattern forming dynamics during long-time evolution.
We observe that there are significant finger-finger interac-
tions at the early stages where new fingers are created by
tip-splitting and fingers disappear. Starting from an arbi-
trary shape, the long-time evolution leads to compact
shapes that depend only on the prefactor (see below) of
the injection rate. These attractive shapes grow self-
similarly. The attractive shapes are stable in the sense
that shape perturbations decay. Although these shapes are
symmetric and thus could be described by a single finger
(as in the sector geometry), we show that the solutions are
different from those reported in [15,19]. We construct a
morphology diagram that illustrates the relation between
the symmetry of the attractive shapes and the prefactor. In
proof-of-concept experiments, we have varied the air in-
jection rate according to the morphology diagram to con-
trol the shape of viscous fingering patterns, thereby
confirming the feasibility of this strategy.

Given a circular air-oil interface slightly perturbed by an
azimuthal Fourier mode with wave number k, the interface
will evolve in the linear regime as rðt; �Þ ¼ RðtÞ þ �kðtÞ�
cosk�, where rðt; �Þ and RðtÞ are the radius of the per-
turbed and unperturbed air-fluid interface, respectively,
and �kðtÞ is the amplitude of the perturbation. The radius
RðtÞ satisfies d

dt ðb�R2Þ ¼ JðtÞ where b is the gap between

the two plates in the Hele-Shaw cell and JðtÞ is the volume
flux of the injected air. A classical linear stability analysis
[20,21] yields the growth rate of the perturbation as

ð�k

R Þ�1 d
dt ð�k

R Þ ¼ k�2
R2 ðJðtÞ � JkðtÞÞ where the critical flux

JkðtÞ ¼ kðk2�1Þ
k�2 J�ðRÞ and J�ðRÞ ¼ b2

12�
�
R2 2�bR is the in-

trinsic characteristic flux of a bubble of radius R due to the
surface tension � (� is the viscosity of the fluid). Thus, a
perturbation with wave number k grows (decays) if the
applied flux J ¼ JðtÞ is larger (smaller) than JkðtÞ. When
JðtÞ ¼ JkðtÞ, the growth rate of the perturbation is zero.
When JðtÞ ¼ J�kðtÞ, where J�kðtÞ ¼ ð3k2 � 1ÞJ�ðRÞ, the kth
mode has the largest growth rate among all the modes.
Taking JðtÞ ¼ CJ�ðRÞ [14,15,19], where the prefactor C is

a dimensionless constant, the radius grows like RðtÞ � t1=3

and according to linear theory, both the number of unstable
modes and the fastest growth mode do not change as the
interface expands. Note that C is the only dimensionless
parameter needed to characterize the system.

In Fig. 2, the nonlinear evolution of the overall shape
perturbation (the maximum deviation of the interface from

the equivalent circle) is shown as a function of the equiva-
lent radius for three different initial conditions with flux as
above with C ¼ 84. Insets show time sequences of the
corresponding shapes. The nonlinear equations are solved
in a radial domain that extends to infinity using a new,
highly efficient method developed by Li et al. [13] that
improves upon earlier work of Hou et al. [22]. The algo-
rithm utilizes a novel time-space rescaling scheme to per-
form spectrally accurate very long-time simulations.
Linear theory predicts that mode 6 is the fastest growth

mode for the flux C ¼ 84. At early times, unstable growth
is significant, and there are complicated tip-splitting and
merging events. At later times, a nonlinear stabilization
emerges and the system evolves towards a sixfold attract-
ing, self-similar shape. Though the three limiting shapes
differ by a rotation, the shape itself is the same. The
attracting, limiting shape has a striking sixfold symmetric
pattern with circles tangent to the inner troughs and the
outer fingertips. The nonlinear limiting shape contains all
harmonics of mode 6 (i.e., modes 6, 12, 18, etc.).
These results are completely outside the predictions of

linear theory. Mode 6, not present in the initial data, is first
created by nonlinear interactions and then is selected as the
fastest growing mode. However, rather than growing ex-
ponentially, as is predicted by linear stability theory, the
growth of all the modes stabilizes due to nonlinear inter-
actions. Even though the initial data differ significantly, all
three simulations converge to the same self-similarly
evolving, nonlinear limiting shape that is far from circular
and is clearly not a dense-branching morphology. This
result strongly suggests that the limiting shape is universal
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FIG. 2 (color online). The nonlinear evolution of the overall
shape perturbation [maximum deviation from a circle with the
same area (equivalent circle)] for three different initial condi-
tions with flux JðtÞ ¼ C �b2

12�
2�b
RðtÞ , where C ¼ 84 and RðtÞ is the

radius of the equivalent circle. Note that RðtÞ is independent of
bubble shape. The initial conditions contain the modes listed in
the figure. The self-similar shape that is obtained at long times
depends only on the dimensionless parameter C.
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in the sense that it depends only on the flux constant C and
is initial data independent and, as shown in the figure,
persists for over 10 orders of magnitude. These results
are in contrast to the statistical equilibria observed in the
dense-branching morphology regime.

As suggested above, C holds the key to a morphological
selection criterion. Exploring this idea further, we perform
a set of nonlinear simulations using different fluxes and a
variety of initial conditions. In each case, we found evolu-
tion towards a universal limiting shape that is dictated
solely by the dimensionless flux constant C. The results
are summarized in a morphology diagram [Fig. 3(a)], in
analogy with a phase diagram for systems in equilibrium,
where a piecewise constant (staircase) curve relates the
symmetry of the limiting shapes to C. There are sharp
transitions from the k fold to the (kþ 1)-fold symmetries
as there is a bifurcation from one family of stable solutions
to another. For flux constants less then 24, approximately,
the only stable self-similar solutions are circles. The length
of each step increases as the flux constant increases sug-
gesting that a broader range of fluxes can be used to
achieve higher symmetries. In Fig. 3(a), we also include
the results of linear theory (dashed curve) for the wave
number k of the fastest growing mode. While linear theory
does provide a good estimate for the symmetry of the
limiting shape (indeed the Rayleigh criterion [23] predicts
that only the fastest growing mode is observed in practice)
there is no theory that predicts the nonlinear stabilization
and saturation reported here. The development of such a
nonlinear theory is an important task for future research.

In Fig. 3(b), we present parameter � that measures the
width of a single finger of the k-fold symmetric attractive
shapes relative to the sector angle. Following [19], � ¼
�=�0 where �0 ¼ 360�=k (dashed lines) and � is the angle
of a ray emanating from the origin that is tangent to the
limiting finger (solid lines). Unlike the monotonic increas-
ing dependence of � on �0 reported in [19], we find that
� � 0:7 for k � 5. For example, when k ¼ 8 and �0 ¼
22:5�, we obtain � ¼ 0:73. In Fig. 4(a) from [19], it was
found that when �0 ¼ 23�, the corresponding width is � ¼
0:64 which demonstrates a quantitative difference between
the sector and circular geometry results. Moreover, for k ¼
3 and 4, it is not possible to define � in this way since there
are no rays emanating from the origin that are tangent to
the finger [see Fig. 3(a)]. Further, for k � 6, the fingers are
retrograde unlike the sector geometry solutions.

The morphology diagram can be used to design a non-
linear protocol in a physical experiment to control the
nonlinear morphological evolution. In recent proof-of-
concept experiments, we have successfully controlled the
air injection rate according to the morphology diagram
such that a selected mode has the fastest growth rate and
would give the symmetry of the universal shape. Starting
with a small initial bubble of fixed radius, the injection
pressure is varied to impose the specified air injection rate.
See Fig. 4(a) for a comparison between the experimental
and theoretical values for the equivalent radius and the

injection pressure (such that mode 5 should be the fastest

growing). Note the t1=3 growth rate of the radius and the
excellent agreement between theory and experiment. In
Fig. 4(b), the corresponding evolution of the experimental
bubble towards a 5-mode dominated shape is seen. At early
times, there is good agreement between the numerical and
experimental bubble morphologies. At later times, the
boundary conditions at the outer edge of the cell become
important and introduce additional effects not modeled in
the simulation. Taking instead an injection flux that favors
mode 8 also yields evolution towards an eightfold symme-
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FIG. 3 (color online). The morphology diagram and character-
istics of the universal shapes. (a) The morphology diagram that
relates the symmetry of the universal shapes to the flux constant
C. Representative universal shapes are shown. The stars denote
nonlinear numerical results. The dot-dashed curve indicates the
relation for the mode number k of the maximum growth rate
from linear theory. There are sharp transitions from the k fold to
the (kþ 1)-fold symmetries. (b) The relationship between the
width � of a single finger relative to the sector angle �0 of k-fold
universal shapes with k � 5. Following [19], � ¼ �=�0 where
�0 ¼ 360�=k (dashed lines) and � is the angle of a ray emanating
from the origin that is tangent to the limiting finger (solid lines).
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try as predicted (not shown). In future work, larger cells
will be used to further verify convergence to universal
shapes.

In conclusion, we have suggested the existence of at-
tractive, symmetric universal shapes in a circular Hele-
Shaw cell. An open question is whether these shapes
have an underlying physical interpretation. In the context
of crystal growth, for instance, there is a connection be-
tween the asymptotic limit of a crystal growing with nor-
mal velocity equal to a (possibly anisotropic) mobility
function and the Wulff (equilibrium) shape [24–28]. It
can be shown that for any asymptotic shape there is a
unique, convex surface energy density such that this shape
is the minimizer of an appropriately rescaled total surface
energy [26,27]. The connection of these results to the
problem studied here merits further investigation.
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FIG. 4 (color online). Experimental demonstration that the
symmetry of an expanding bubble in castor oil (� ¼
0:048 N=m, � ¼ 1 Pa � s, b ¼ 0:5 mm, the size of the cell is
R� ¼ 10 cm) can be selected using the flux JðtÞ ¼ C �b2

12�
2�b
RðtÞ .

Note that there is a unique relation between the injection flux and
pressure as indicated in the figure. In (a), the pressure and
equivalent radius are shown-symbols (experiments), solid lines
(theory)-with C ¼ 74. In (b), a corresponding sequence of
bubble morphologies is shown. As predicted by the morphology
diagram, a fivefold shape emerges. Concentric circles mark
radial increments of 0.5 cm.
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