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We identify the phase-space structures that regulate atomic double ionization in strong ultrashort laser

pulses. The emerging dynamical picture complements the recollision scenario by clarifying the distinct

roles played by the recolliding and core electrons, and leads to verifiable predictions on the characteristic

features of the ‘‘knee’’, a hallmark of the nonsequential process.
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One of the most striking surprises of recent years in
intense laser-matter interactions has come from multiple
ionization by intense short laser pulses: Correlated (non-
sequential) double ionization rates were found to be several
orders of magnitude higher than the uncorrelated sequen-
tial mechanism allows. This discrepancy has made the
characteristic ‘‘knee’’ shape in the double ionization yield
versus intensity plot into one of the most dramatic mani-
festations of electron-electron correlation in nature. The
precise mechanism that makes correlation so effective is
far from settled. Different scenarios have been proposed to
explain the mechanism behind ionization [1–18] and have
been confronted with experiments [19,20], the recollision
scenario [2,3] (in which the ionized electron is hurled back
at the core by the laser) being in best accord with experi-
ments. In Fig. 1, a typical double ionization probability as a
function of the intensity of the laser field is plotted. Similar
knees have been observed in experimental data [1,4,20–26]
and successfully reproduced by quantal computations on
atoms and molecules [5,27–29]. In a recent series of ar-
ticles [8,9,12,13,29–31] characteristic features of double
ionization were reproduced using classical trajectories and
this success was ascribed to the paramount role of corre-
lation [12]. Indeed, entirely classical interactions turn out
to be adequate to generate the strong two-electron corre-
lation needed for double ionization.

In this Letter, we complement the well-known recolli-
sion scenario by identifying the organizing principles
which explain the statistical properties of the classical
trajectories such as ionization probabilities. In addition to
the dynamical picture of the ionized electron provided by
the recollision scenario, we connect the dynamics of the
core electron and the energy flow leading to double ion-
ization to relevant phase-space structures (periodic orbits
or invariant tori). The resulting picture leads to two verifi-
able predictions for key points which make up the knee in
Fig. 1: namely, the laser intensity where nonsequential
double ionization is maximal and the intensity where the
double ionization is complete. Of course, the saturation
intensity emerges naturally in quantum mechanical calcu-

lations (e.g., Refs. [5,28]) provided they cover a wide
enough intensity range.
We work with the classical Hamiltonian model of the

helium atom with soft Coulomb potentials [32,33]. The
Hamiltonian is given by [10]:

H ðx; y; px; py; tÞ ¼ p2
x

2
þ p2

y

2
þ ðxþ yÞEðtÞ

þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðx� yÞ2 þ 1
p � 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ 1
p

� 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ 1

p ; (1)

where x, y and px, py are the positions and (canonically
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FIG. 1 (color online). Double ionization probability for
Hamiltonian (1) as a function of the intensity of the field I for
! ¼ 0:0584 a:u: The vertical lines indicate [in green (light
gray)] the laser intensity IðcÞ ¼ 4:57� 1014 W � cm�2 where
our dynamical analysis predicts the maximum of nonsequential
double ionization, and [in blue (dark gray)] the intensity Ic ¼
1:86� 1016 W � cm�2 where the double ionization is expected
to be complete (see Fig. 4).
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conjugate) momenta of each electron, respectively. The
energy is initially fixed at the ground state Eg ¼
�2:24 a:u: [34]. The laser field is modeled by a sinusoidal
pulse with an envelope, i.e., EðtÞ ¼ E0fðtÞ sin!t where E0

is the maximum amplitude and ! the laser frequency
chosen as ! ¼ 0:0584 a:u: which corresponds to a wave-
length of 780 nm. The pulse envelope fðtÞ is chosen as a
trapezoidal function with 2-4-2 laser pulse shape (the
ramp-up lasts two cycles, the plateau four, and the ramp-
down two) [12,13,29,30]. Typical ionizing trajectories of
Hamiltonian (1) show two qualitatively different routes to
double ionization: nonsequential double ionization
(NSDI), where the two electrons leave the core (inner)
region at about the same time, and sequential double
ionization (SDI), where one electron leaves the inner re-
gion long time after the other one has ionized.

We first analyze the dynamics of Hamiltonian (1) with-
out the field (E0 ¼ 0) using linear stability properties such
as obtained by the finite-time Lyapunov (FTL) exponents
[35,36]. With each initial condition on a plane [e.g., (x, px)
with y ¼ 0, and py determined by H ¼ Eg on Fig. 2] for

Hamiltonian (1), we associate a coefficient which quanti-
fies the degree of chaos experienced by the trajectory up to
a given time. A typical FTL map is depicted in Fig. 2 for
Hamiltonian (1) without the field. It clearly displays strong
and global chaos by showing fine details of the stretching
and folding of trajectories [35]. In particular, there are no
regular elliptic islands of stability contrary to what is com-
mon with Hamiltonian systems on a bounded energy mani-
fold. By examining typical trajectories, we notice that the
two electrons follow, at different times, one of four hyper-
bolic two-electron periodic orbits. Their period is 29 a.u.,
i.e., much shorter than the duration of the laser pulse (of
order 800 a.u.). The projections of two of them,O1 andO2,
on the (x, px) plane, are displayed in Fig. 2. The two other
ones are obtained from O1 and O2 using the symmetries of

Hamiltonian (1). In particular, if one electron is on the in-
ner curve in (x, px), the second electron is on the outer
curve in (y, py). Consequently, a typical two-electron

trajectory is composed of one electron close to the nucleus
[the ‘‘inner’’ electron, in blue (dark gray)] and another fur-
ther away [the ‘‘outer’’ electron, in red (medium gray)],
with quick exchanges of the roles of each electron. This
distinction is crucial when the laser field is turned on: Since
the contribution of the field-electron interaction to Hamil-
tonian (1) is proportional to the position, the action of the
field is larger for the outer electron, while the inner electron
is mainly driven by the interaction with the nucleus.
Single ionization.—By switching on the field, the outer

electron is picked up and swept away from the nucleus.
Consequently, its effective Hamiltonian is:

H 1 ¼ p2
x

2
þ E0xfðtÞ sin!t: (2)

We notice that HamiltonianH 1 is integrable. Its solutions
are approximately composed of linear escape from the
nucleus (at time t0) modulated by the action of the field
[2,37,38] [see the red (medium gray) trajectory in Fig. 3].
For the inner electron, the effective Hamiltonian con-

tains the interaction with the nucleus and with the laser
field:

H 2 ¼
p2
y

2
� 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y2 þ 1
p þ yE0 sin!t: (3)

In the absence of the field (E0 ¼ 0), H 2 is also inte-
grable and the inner electron is confined on a periodic orbit.

FIG. 2 (color online). FTL map of Hamiltonian (1) without the
field at time t ¼ 43 a:u: in the plane (x, px) with y ¼ 0. The
continuous curves represent the projections of two periodic
orbits O1 [blue (dark gray) curve] and O2 [red (medium gray)
curve] which drive the dynamics of Hamiltonian (1).
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FIG. 3 (color online). Two typical trajectories of Hamiltonian
(1) for I ¼ 1015 W � cm�2 for initial conditions in the ground
state energy of the helium atom. The two positions [x in red
(medium gray) and y in blue (dark gray)] are plotted versus time
(expressed in laser cycles). Note the vastly different vertical
scales of the two panels. The recollision mechanism is seen in
both panels: In the upper one, the recollision (at the end of the
panel) brings in enough energy to ionize the inner electron. In
the lower panel, the recollision energy is insufficient to ionize
the inner electron—the electrons exchange roles instead.
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Since it stays close to the nucleus, its approximate period is

2�=
ffiffiffi
2

p
obtained from the harmonic approximation, as

observed in Fig. 3.
Sequential double ionization (SDI).—Once an electron

has been ionized (usually during the ramp-up of the
field), the other electron is left with the nucleus and the
field. Its effective Hamiltonian is H 2. A contour plot of
the electron excursions after two laser cycles and a
Poincaré section of H 2 are depicted in Fig. 4 for I ¼
5� 1015 W � cm�2. They clearly show two distinct re-
gions: The first one is the core region which is composed
of a collection of invariant tori which are slight deforma-
tions of the ones obtained in the integrable case H 2

without the field. This elliptic region is organized around
a main elliptic periodic orbit which has the same period as
the field 2�=! � 107:6 a:u: In this region, the electrons
are fairly insensitive to the field, and do not ionize. The
second region is the one outside the core where trajectories
ionize quickly. It corresponds to sequential double ioniza-
tion. In between these two regions, any weak interaction
(with the outer electron for instance) may move the inner
electron confined on the outermost regular tori (but still
inside the brown elliptical region) to the outer region where
it ionizes quickly.

If the laser intensity I is too small, then the phase space
is filled with invariant tori and no sequential double ion-
ization can occur because the motion is regular. The se-
quential double ionization probability depends then on the
size of the regular region around the elliptic periodic orbit,
and hence on I. We have numerically computed the loca-
tion and the stability of this periodic orbit for ! ¼
0:0584 a:u: [35]. When it exists, this periodic orbit stays
elliptic in the whole range of intensities we have consid-
ered. On the stroboscopic plot (with frequency !) the
periodic orbit is located at y ¼ 0. In Fig. 4, the momentum
py of the periodic orbit on the stroboscopic plot is repre-

sented as a function of I. We notice that for a large set of
intensities in the range ½1014; 1016� W � cm�2, this periodic
orbit is located close to py ¼ 0. For intensities larger than

Ic ¼ 1:86� 1016 W � cm�2, the periodic orbit does not
exist, and no major islands of regularity remain.
Therefore, it is expected that the sequential double ioniza-
tion probability is equal to one in this range of intensities,
as observed on the probability curve on Fig. 1. The location
of the local maximum of the potential of Hamiltonian (3)
predicts that the intensity Ic is approximately independent
of ! and is equal to Ic � 2:09� 1016 W � cm�2 (which

corresponds to E0 � 4=ð3 ffiffiffi
3

p Þ).
Nonsequential double ionization (NSDI).—As noted be-

fore, when the field is turned on, its action is concentrated
on only one electron, the outer one, as a first step. The field
drives the outer electron away from the nucleus, leaving
the inner electron nearly unaffected by the field because its
position remains small. From the recollision process [2,3],
the outer electron might come back close to the nucleus
during the pulse plateau, if the field amplitude is not too
large. In this case, it transfers a part of its energy to the
inner electron through the electron-electron interaction
term. From then on, two outcomes are possible: If the
energy brought in by the outer electron is sufficient for
the other electron to escape from the regular region (as in
Fig. 3, upper panel), then it might ionize together with the
outer electron. The maximum energy Ex of the outer elec-
tron when it returns to the inner region (after having left the
inner region with a small momentum p0 close to zero) is
obtained from Hamiltonian (2) and is Ex ¼ �Up, where

Up ¼ E2
0=ð4!2Þ is the ponderomotive energy and � ¼

3:17 . . . is the maximum recollision kinetic energy in units
of Up [2,37,38]. We complement the recollision scenario

(which focuses on the outer electron) by providing the
phase-space picture of the inner electron: In order to ionize
the core electron, the energy brought back by the outer
electron has to be of order of the energy difference between
the core (y ¼ 0) and the boundary of the stable region (y ¼
ym) of H 2 (see Fig. 4) which is equal to

�Ey ¼ 2� 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2m þ 1

p : (4)

A good approximation to ym ¼ ymðE0Þ is given by
the value where the potential is locally maximum, i.e.

FIG. 4 (color online). Upper panel: Contour plot of the elec-
tron location yðtÞ at time t ¼ 215:2 a:u: (2 laser cycles), of
Hamiltonian (3) for I ¼ 5� 1015 W � cm�2. Poincaré sections
(stroboscopic plot) of selected trajectories in the elliptic central
region are also depicted. The color code is on a logarithmic
scale. The inset shows a projection of the central periodic orbit at
I ¼ 1:7� 1016 W � cm�2 in the (y, py) plane. Lower panel:

Momentum of the central periodic orbit (on the Poincaré section)
of Hamiltonian (3) as a function of the laser intensity. The
vertical line on the lower panel indicates the intensity Ic ¼
1:86� 1016 W � cm�2 such that for I � Ic, complete unhindered
SDI is expected [5,28].

PRL 102, 173002 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending
1 MAY 2009

173002-3



E0 ¼ 2ym=ðy2m þ 1Þ3=2. The equal-sharing relation which
links the classical picture of the outer electron x with the
one of the inner electron y,

�Ey ¼ Ex

2
¼ �

2!2

y2m
ðy2m þ 1Þ3 ; (5)

defines (through an implicit equation) the expected value

of the field EðcÞ
0 for maximal NSDI, because it describes the

case when each outer electron brings back enough energy
to ionize the inner electron, while remaining ionized itself.
However, fulfilling this energy requirement does not guar-
antee NSDI: The outcome depends on the number and
efficiency of recollisions. For ! ¼ 0:0584, the predicted

value of the amplitude EðcÞ
0 as given by Eq. (5) corresponds

to an intensity of IðcÞ ¼ 4:57� 1014 W � cm�2 which
agrees very well with the simulations shown in Fig. 1. In

a wide range of frequencies, an accurate expansion of EðcÞ
0

is obtained from Eqs. (4) and (5) and given by

EðcÞ
0 ¼ 4!ffiffiffiffi

�
p �

�
2!ffiffiffiffi
�

p
�
3=2 þO

�
4!2

�

�
; (6)

for sufficiently small !. To leading order the correspond-
ing intensity varies as !2. For ! ¼ 0:0584, the approxi-
mate intensity given by Eq. (6) is 4:60� 1014 W � cm�2

which is in excellent agreement with IðcÞ. When the field E0

is too small, then the outer electron cannot gain enough
energy to ionize the inner electron. When the field E0 is too
large, then the outer electron does not recollide since it
leaves the interaction region nearly linearly. These two
limits explain the bell shape of the resulting nonsequential
double ionization probability, which, when put together
with the monotonic rise of the SDI probability at higher
intensities, adds up to the knee in question.
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