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A Rydberg and a ground-state atom can form ultra-long-range diatomic molecules provided the

interaction between the ground-state atom and the Rydberg electron is attractive [C. H. Greene et al.,

Phys. Rev. Lett. 85, 2458 (2000)]. A repulsive interaction does not support bound states. However, as we

will show, adding a second ground-state atom, a long-range bound triatomic molecule becomes possible.

DOI: 10.1103/PhysRevLett.102.173001 PACS numbers: 33.80.Rv, 31.50.Df, 67.85.�d

With the advent of ultracold atomic physics, new forms
of atomic systems become possible. The trilobite, arguably
one of the most exotic molecules, is a Rydberg atom bound
to a ground-state atom by its polarization potential. The
existence of this extremely-long-range molecule was pro-
posed, along with its name, by Greene et al. [1]. Following
this line of argument, previously unexplained satellite
peaks in thermal spectra of molecules could be traced to
the formation of such long-range molecules [2]. The idea
of long-range cold molecules generated considerable in-
terest [2–6], which will increase even more through the
recent experimental proof that ultracold trilobites exist [7].
The basis of the molecular bond in such systems is a
negative scattering length leading to an attractive atom-
Rydberg atom potential, which is in addition modulated by
the electronic Rydberg wave function. An extension of the
trilobite to polyatomic Rydberg molecules involving sev-
eral ground-state atoms and one Rydberg atom was inves-
tigated in [8]. There it was found that certain geometric
arrangements have adiabatic molecular potentials, which
are many times deeper than in the diatomic case making
clear that a large variety of molecular Rydberg systems can
exist in an ultracold environment, with the possibility for a
novel kind of chemistry with weakly bound systems.

Here we will show that the building principles of long-
range molecular binding in the ultracold regime allow the
formation of a triatomic molecule even if the interaction
between the Rydberg atom and each of the two ground-
state atoms is repulsive (positive scattering length). We
will concentrate on neon as an example which has a
positive scattering length. The Rydberg neon trimer is a
molecule formed out of three linearly aligned neon atoms
where the one in the middle is Rydberg excited. We will
use atomic units unless stated otherwise.

Since the Rydberg wave function does not vary over the
extension of a ground-state electronic wave function, the
interaction can be described by a Fermi pseudopotential
[9], which amounts to a contact interaction

VFðr; r1Þ ¼ L1�ðr� r1Þ; (1)

where r is the coordinate of the Rydberg electron and r1 is
the position of the ground-state atom A measured from the

Rydberg atom. Furthermore, L1 ¼ �2� tan�0=kðr1Þ is the
energy-dependent scattering length of the collision system
e� þ A containing the s-wave phase shift �0 and the local
momentum kðr1Þ of the Rydberg electron, related to the
distance r1 through the energy conservation kðr1Þ2=2 ¼
�1=2n2 þ 1=R. In the low-energy limit, the modified ef-
fective range theory [10] expresses L1 analytically in terms
of the zero-energy scattering length L0 and the polariz-
ability of the atom �,

L1

2�
¼ L0 þ �

3
�kðr1Þ: (2)

For impact energy larger than 0.003 eV in the e� þ Ne
system, ab initio phase shift data [11] allow one to connect
the scattering length of Eq. (2) to higher energies accu-
rately, using the values � ¼ 2:613 a:u: and L0 ¼
0:2218 a:u: from Ref. [11].
For N ground-state atoms at positions ri, the full elec-

tronic Hamiltonian reads

hN ¼ HcðrÞ þ
XN
i¼1

Li�ðr� riÞ; (3)

where Hc ¼ p2=2þ VcðrÞ is the hydrogenic Rydberg
Hamiltonian with Coulomb interaction VcðrÞ of the
Rydberg electron and its mother ion. For Nd degenerate
levels (Nd � N) of Hc, the eigenenergies of hN may be
obtained by diagonalizing the interaction �iVFðr; riÞ
within a degenerate manifold of hydrogenic eigenfunctions
�nlm of principal quantum number n. It is straightforward

to show that the resulting interaction matrix V̂F has Nd �
N eigenvalues equal to zero. The remaining N nontrivial

eigenvalues of V̂F can be obtained by diagonalizing the
interaction �iVFðr; riÞ in the basis of the i ¼ 1; . . . ; N
states

c nðr; riÞ ¼
X

l�lmin;m

��
nlmðriÞ�nlmðrÞ; (4)

which are neither orthogonal nor normalized. Low-l states
may have different energies due to large quantum defects,
so they need to be excluded from the basis formed with
states of Coulomb energy �1=2n2.
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In the case of a dimer, c nðr; r1Þ given by Eq. (4) is an
eigenstate of h2. Making use of the addition theorem for
spherical harmonics (x̂ is a unit vector) [12], we reduce
c nðr; r1Þ to

c nðr; r1Þ ¼
X

l�lmin

�nlðr1Þ�nlðrÞ 2lþ 1

4�
Plðr̂1r̂Þ; (5)

with the radial hydrogenic eigenfunctions �nl. It is
convenient to specify the overlap integral Sij �
hc nðr; riÞjc nðr; rjÞir which yields

Sij ¼
X
l

�nlðriÞ�nlðrjÞ 2lþ 1

4�
Plðr̂ir̂jÞ: (6)

Clearly, the normalized dimer eigenfunction reads

�nðr; r1Þ ¼ c nðr; r1Þ=S1=211 . The relation Eq. (6) allows

one to write the dimer energy E2ðr1Þ ¼ h�njh2ðr1Þj�ni þ
1=2n2 in the compact form

E2ðr1Þ ¼ L1S11; (7)

which is shown for the neon Rydberg dimer Neþ Ne� as
the dash-dotted line in Fig. 1. Clearly, E2ðr1Þ does not
support bound states.

However, we will show that adding another neon
ground-state atom allows for long-range bound states of
the neon trimer with Hamiltonian

h3 ¼ HcðrÞ þ L1�ðr� r1Þ þ L2�ðr� r2Þ; (8)

where Li > 0. To accommodate for gerade (þ) or un-
gerade (�) symmetry (since the two neon atoms 1 and 2

are identical), the superpositions �� of states �nðr; riÞ ¼
c nðr; riÞ=S1=2ii are used as basis functions

��ðr; r1; r2Þ ¼ ½�nðr; r1Þ ��nðr; r2Þ�=
ffiffiffiffiffiffiffi
N�

p
; (9)

where N� are the normalization factors

N� ¼ 2� 2
S12ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S11S22

p : (10)

In this set of basis functions, the Hamiltonian h3 forms a
2� 2 matrix with diagonal terms E�

dia ¼ h��jh3j��i þ
1=2n2 of the simple form

E�
diaðr1; r2Þ ¼

L1S11 þ L2S22
4

N�; (11)

and the off-diagonal terms Eoff ¼ h��jh3j��i

Eoffðr1; r2Þ ¼ L1S11 � L2S22
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NþN�

p
: (12)

The adiabatic potentials are the eigenvalues of this 2� 2
potential matrix and have the following analytical form

Eu ðdÞðr1; r2Þ ¼ L1S11 þ L2S22
2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðL1S11 � L2S22Þ2 þ 4L1L2S

2
12

q
2

: (13)

A symmetric cut through this potential for r2 ¼ �r1 �
R is shown in Fig. 1. Since Eoffðr1;�r1Þ ¼ 0, the sym-
metric cut has the appealing analytical form

Eu ðdÞðr1;�r1Þ ¼ E�
diaðr1;�r1Þ ¼ 2L1S�; (14)

where S� ¼ ½c nðr1; r1Þ � c nðr1;�r1Þ�=2. Hence, de-
pending on gerade (ungerade) symmetry only even (odd)
components l in the sum of Eq. (5) contribute. The sym-
metry induced separation of basis functions with even and
odd l results in a more pronounced undulation of the
corresponding potentials (as can be seen in Fig. 1), since
there is less interference from wave functions with differ-
ent nodal structure.
To determine if the neon Rydberg trimer can support

long-range bound states we make a normal mode analysis
on the electronic surface from Eq. (13), to which the out-
ermost minimum belongs. To this end it is useful to define
symmetry adopted Jacobi coordinates for the nuclear mo-
tion,

r A ¼ ðr1 þ r2Þ=2; R ¼ ðr1 � r2Þ=2: (15)

In these coordinates, the nuclear Hamiltonian for total
angular momentum L ¼ 0 is given by

H ¼ 1

4

P2

m
þ 3

4

p2
A

m
þ Eu ðdÞðrA þ Rẑ; rA � RẑÞ; (16)

where m is the mass of a neon atom, and we have chosen
the coordinates such that R ¼ Rẑ along the body fixed
z axis. We may reexpress the potential energy surface as

Eu ðdÞ ¼ EuðdÞðR; z; �Þ.
In the following, we quantize the trimer with n ¼ 30 in a

separable approximation closely related to the normal
mode analysis for molecules. With the condition
dEd=dR ¼ dEd=d� ¼ dEd=dz ¼ 0 we determine the
equilibrium points ðR;�; zÞ ¼ ðRi; 0; 0Þ of the potential.
Figure 1 reveals many minima in the symmetric stretch
(SS) coordinate R; we will quantize the outermost mini-
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FIG. 1 (color online). The adiabatic potential Eq. (7) with r1 ¼
R for the (n ¼ 30) neon Rydberg dimer (dash-dotteded black
line) and the symmetric stretch cuts Eq. (15) of trimer in solid
blue line (þ) and dashed red line (�).
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mum at R0 ¼ 850 a:u: As can be seen in the same figure,
tunneling of the quantized states in the R coordinate de-
pends sensitively on the form of the potential. Hence,
instead of a formal harmonic normal mode expansion
about the equilibrium point, we simply split the potential
in several contributions, leaving only one coordinate as a
variable in each term while fixing the others at their
equilibrium values. This allows for an explicit numerical
solution in each degree of freedom under the total potential

E 0ðR; z; �Þ ¼ VSðRÞ þ VAðzÞ þ VBð�Þ � 2V0; (17)

with

V0 ¼ EdðR0; 0; 0Þ
VAðzÞ ¼ EdðR0; 0; zÞ
VSðRÞ ¼ Eþ

diaðRẑ;�RẑÞ
VBð�Þ ¼ Eþ

diað�x̂þ R0ẑ; �x̂� R0ẑÞ:

(18)

The potentials VS, VB, and VA are computed and shown in
Figs. 1–3, respectively. The modes correspond to molecu-
lar types of normal mode vibrations along the SS (in R), the
bending (in �), and the asymmetric stretch (AS) (in z) with
the product wave function

�0ðR; z; �Þ ¼ �ðRÞ�ðzÞ�ð�Þ; (19)

where

�
� 1

4m

d2

dR2
þ VSðRÞ

�
�ðRÞ ¼ ES�ðRÞ; (20)

and similarly for the other coordinates.
The quantized bending motion has a zero-point energy

at EB ¼ 1:04� 10�7 a:u: as shown in Fig. 2. The SS
potential shown in Fig. 1 supports a ground state with
energy ES ¼ 8:11� 10�8 a:u: and an excited state. Both
of them are, in principle, resonances which decay through
tunneling in the separable approximation. However, the
ground state is practically stable. Last, we come to the
AS which has near equilibrium (z ¼ 0) the form of an
inverted oscillator (Fig. 3). From its maximum at z ¼ 0
the curve falls to the left and to the right into deep but
narrow wells, which are the familiar Ne2

þ electronic
ground-state potentials, to which the asymptotic polariza-
tion potential ��=2r4i of the Rydberg excited level
smoothly connects. For even shorter distances, the
ab initio data for the Ne2

þ potential from Ref. [13] are
used. The potential landscape is similar to that of triatomic
ABA molecules for which so-called hyperspherical reso-
nances exist [14]. The corresponding quasibound resonant
eigenfunctions are highly excited with many nodes along
the AS, and the resonant energy EA almost touches the top
of the barrier, i.e., the equilibrium point EA 	 V0 ¼
7:30� 10�8 a:u:. To a good approximation the lifetime
of the resonance can be estimated from the curvature kA
of the potential at V0, �A 	 2�!�1

A ¼ 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	A=kA

p ¼

57 ns with 	A ¼ 2m=3. Intuitively, this curvature deter-
mines the time scale on which probability density ‘‘slides
down’’ the inverted oscillator potential towards the dimer
diatomic decay channel. To summarize, the total ground-
state energy of the long-range neon trimer measured from
the Rydberg energy �1=2n2 (which is the energy of the
three-body system in the separated-atom limit r1=2 ! 1) is

given by

E0 ¼ ES þ EA þ 2EB � 3V0 ¼ 1:43� 10�7 a:u: (21)

This means a blueshift of 940 MHz from the Rydberg
excitation line and the lifetime is limited by the decay of
the AS mode to about � 	 57 ns. Because of the cylindri-
cal symmetry of the collinear trimer in equilibrium, the
bending motion in ð�;�Þ is doubly degenerate, hence it
contributes 2EB.
For n ¼ 30, the bending can be neglected due to the

localized motion about � ¼ 0 and the long bond length.
Figure 4 gives an overview of the dynamics of the trimer in
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FIG. 3. The adiabatic potential VAðzÞ [see Eq. (18)] at the
outermost equilibrium point R0 as a function of the asymmetric
stretch coordinate z for the (n ¼ 30) neon Rydberg trimer as
well as the corresponding potential for the Eu potential (upper
curve).

-400 -300 -200 -100 0 100 200 300 400

ρ (a.u.)

6.0

8.0

10.0

12.0

14.0

16.0

18.0

20.0

V
B
 (

10
-8

 a
.u

.)

FIG. 2 (color online). The adiabatic potential VBð�Þ [see
Eq. (18)] at the outermost equilibrium point R0 as a function
of the bending coordinate � for the (n ¼ 30) neon Rydberg
trimer. The solid blue line and the dashed red line correspond to
Eþ
dia and E

�
dia in Eq. (11), respectively. The shaded area shows the

quantized state.
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the plane of the SS and AS coordinate (in collinear geome-
try with � ¼ 0). The system rolls down from the top of the
saddle point through a potential valley into the two-body
region.

The lifetime of the loosely bound Rydberg trimer can be
optimized by varying the Rydberg excitation n: Higher n
leads to shallower potentials which increases the lifetime
in the AS but decreases it in the SS and the bending due to a
stronger tunneling. Hence, there exists some n with maxi-
mum lifetime �. To determine its value, we first obtained a
general expression for the curvature of the saddle in the

AS, which gives an estimate for the decaying time �A ¼
n4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�3	A=L0

p
. This is obtained by approximating the

shape of the saddle with a parabola of height L0=�n
4

and width 2n2. We then numerically calculate the tunneling
times �S and �B in the SS and the bending by solving the
corresponding Schrödinger equations and matching the
asymptotic phases, for increasing n at the outermost mini-
mum until the tunneling in the bending becomes too large.
For Ne3

�, it was found that this optimal value occurs at

about n ¼ 55, where the overall lifetime is as large as � ¼
ð1=�S þ 2=�B þ 1=�AÞ�1 ¼ 0:46 	s.

One may question the validity of the adiabatic approxi-
mation in the presence of a series of conical intersections
as obvious from the crossings in the diagonal part of the
Hamiltonian matrix Eq. (14) and Fig. 1. However, the
vibrational ground-state wave function �0 is strongly lo-
calized about R0, suppressing the effect of coupling even at
the closest conical intersection. Future work will consider
the effect of a series of conical sections in a situation where
they are dynamically active, i.e., not sitting on a decaying
background potential which renders the adiabatic wave

function exponentially small under a larger barrier at the
location of the intersections.
To summarize, we have demonstrated that a Rydberg

atom may form with two ground-state atoms an ultra-long-
range molecule with finite but long lifetime despite posi-
tive scattering length of the Rydberg electron-ground-
state-atom interaction. With respect to the long-range
ultracold dynamics, this binding is akin to the Borromean
systems where three particles form a bound (ground) state
though each pair of particles does not have a bound state
[15]. The three-body system considered here enjoys bind-
ing forces with similar characteristics, namely, neither the
corresponding diatomic molecule with a Rydberg and a
ground-state atom nor a pair of ultracold ground-state
Ne atoms has a long-range bound state. In contrast to a
traditional Borromean system, the atoms of the Rydberg
long-range trimer are additionally subject to the usual
(short-range) molecular binding, which is responsible for
the formation of diatomic molecules.
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FIG. 4 (color online). The contour plot for the lower adiabatic
potential surface of the neon Rydberg trimer in collinear con-
figuration. The directions of the symmetric (SS) and asymmetric
stretch (AS) modes are indicated. The white dot represents the
system at the equilibrium point (850, 0, 0), whose subsequent
decay with the combined SS motion in the AS direction is
represented by the curly arrow.
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