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We investigate the c ð3770Þ non-D �D decays into VP, where V and P denote vector and pseudoscalar

mesons, respectively, via Okubo-Zweig-Iizuka-rule-evading intermediate meson rescatterings in an

effective Lagrangian theory. By identifying the leading meson loop transitions and constraining the

model parameters with the available experimental data for c ð3770Þ ! J=c�,��, and ��, we succeed in

making a quantitative prediction for all c ð3770Þ ! VP with BRVP from 0.41% to 0.64%. It indicates that

the Okubo-Zweig-Iizuka-rule-evading long-range interactions play a role in c ð3770Þ strong decays, and

could be a key towards a full understanding of the mysterious c ð3770Þ non-D �D decay mechanism.
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The charmonium state c ð3770Þ has a mass just above
the open D �D threshold, which allows it to decay into
charmed mesons, i.e., D �D, without the so-called Okubo-
Zweig-Iizuka (OZI) rule [1] suppression. This scenario
qualitatively explains that the width of the c ð3770Þ is
about 2 orders of magnitude larger than those of the J=c
and c 0 due to the dominant D �D decay. An interesting and
nontrivial question here is whether the c ð3770Þ decay is
totally saturated by D �D or there exist significant non-D �D
decay channels. Unfortunately, a definite answer from
either experiment or theory is unavailable. The CLEO
Collaboration measured the exclusive cross sections for
c ð3770Þ ! D �D [2,3] and inclusive cross sections for
c ð3770Þ ! hadrons [4]. These results lead to
BRc ð3770Þ!D �D ¼ ð103:0� 1:4þ5:1

�6:8Þ%, the lower bound of

which suggests that the maximum non-D �D branching ratio
is about 6.8%.

The D �D production cross sections measured by BES [5]
are consistent with CLEO [3]. However, the analyses lead
to much larger non-D �D branching ratios of �15%. Such a
significant discrepancy makes the experimental status
quite puzzling. Also, the search for exclusive non-D �D
decays has been carried out at both CLEO [6] and BES
[7]. In Ref. [8], three non-D �D hadronic decay branching
ratios are listed, i.e., c ð3770Þ ! J=c��, J=c�, and��,
while tens of other channels have only experimental upper
limits due to the poor statistics. In the radiative decay
channel, c ð3770Þ ! ��c0 and ��c1 are listed, while an
upper limit is given to ��c2. The sum of those channels,
however, is far from clarifying the mysterious situation of
the c ð3770Þ non-D �D decays. It hence stimulates intensive
experimental and theoretical efforts [9–16] towards under-
standing the nature of c ð3770Þ and its strong and radiative
transition dynamics.

In this Letter we propose that the dominant D �D decay is
strongly correlated with the non-D �D ones. We argue that
the intermediate D �D and D �D� þ c:c: rescatterings, which

annihilate the c �c at a relatively large distance by the OZI-
rule evading processes, may provide a natural mechanism
for quantifying the c ð3770Þ non-D �D decays.
As illustrated in Fig. 1 the c �c pair first couples to an

intermediate meson pair, e.g., D �D, and then these two
mesons rescatter into two light mesons via the c �c annihi-
lation and a light quark pair creation. Qualitatively, with
the branching ratio for c ð3770Þ ! D �D at an order of 1, the
rescattering process could be suppressed by 2 or 3 orders of
magnitude. Note that the OZI-evading rescatterings are
open to numerous final-state light mesons. It might be
possible that a sum of those exclusive final states would
account for a sizeable fraction of the c ð3770Þ branching
ratios.
A natural way of describing the rescattering processes is

to expand the amplitude in Fig. 1 via the Mandelstam
variables t � ðPf1 � p1Þ2 and s � ðPf1 þ Pf2Þ2 ¼
M2

c ð3770Þ. At leading order, the t channel is via an additional
meson exchange transition, while the s channel can be
recognized as the vector meson mixings, e.g., c ð2SÞ �
c ð1DÞ mixing [10,11]. The typical transition diagrams
are shown in Fig. 2. The intermediate D �D rescattering
will contribute to the absorptive part of the transition
amplitude and is not to be dual to the pQCD leading
transition via short-range gluon exchanges. This is an
explicit indication that long-range interactions can play
an important role in such a transition. The intermediate

FIG. 1. Schematic diagrams for the charmed meson rescatter-
ings into a non-D �D decay channel VP via (a) D �D loop and
(b) D �D�. The conjugation channel D� �D is also implied in (b).
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D �D� þ c:c: can contribute to the real part of the transition
amplitude due to its large coupling to c ð3770Þ [17] and the
breakdown of the local quark-hadron duality [18,19]. By
clarifying the above points, we are ready to construct the
theory for probing the role played by the intermediate
charmed meson loops in c ð3770Þ ! VP.

The following effective Lagrangians are needed in the
evaluation of the t- and s-channel transitions:

LcD �D ¼ gcD �DfD@� �D� @�D �Dgc �;

LVD �D� ¼ �igVD �D��	
��@
	V 
@� �D��Dþ H:c:;

LPD� �D� ¼ �igPD� �D��	
��@
	D�
@� �D��P þ H:c:;

LP �DD� ¼ gD�P �Df �D@�P � @� �DP gD�� þ H:c:;

(1)

where �	
�� is the Levi-Civita tensor; P and V 
 are the

pseudoscalar and vector meson fields, respectively.
The charmed meson couplings to light meson are ob-

tained in the chiral and heavy quark limits [17],

gD�D� ¼ 2

f�
g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mDmD�
p

; gD�D�� ¼ gD�D�

~MD

;

gD�D� ¼ ffiffiffi

2
p

�g�; gDD� ¼ gD�D�
~MD;

(2)

where f� ¼ 132 MeV is the pion decay constant, and
~MD � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mDmD�
p

sets a mass scale. The parameters g�
respect the relation g� ¼ m�=f� [20]. We take � ¼
0:56 GeV�1 and g ¼ 0:59 [21,22].

The coupling gc ð3770ÞD �D is extracted by

�c ð3770Þ!D �D ¼
g2
c ð3770ÞD �D

j ~pj3
6�M2

c ð3770Þ
; (3)

where j ~pj is the D-meson momentum. The branching
ratios for c ð3770Þ ! DþD� and D0 �D0 are slightly differ-
ent. They give gc ð3770ÞDþD� ¼ 12:71 and gc ð3770ÞD0 �D0 ¼
12:43, and reflect the isospin violation due to the mass
difference between the u and d quark. Taking into account
the consequent kinematic difference, we also have access
to isospin-violating channels via the meson loops.

For other couplings, we take the SU(3) flavor sym-
metry as a leading order approximation which leads
to gD0� �D0u �u ¼ gDþ�D�d �d ¼ gDþ�

s D�
s s�s

and g
D0� �D0�u �u ¼

gDþ�D��d �d ¼ gDþ�
s D��

s s�s. So we have gD�D� ¼
ffiffiffi

2
p

gD�Dq �qð0�Þ, gD�D� ¼ ffiffiffi

2
p

gD�Dq �qð1�Þ, gD�Ds�s ¼ 0, and

gD�
sDsn �n ¼ 0, with n for u or d quark. Similar relations

are also implied for gD�D��, and gDD�.

We adopt coupling constants gJ=cDD� ¼ 3:84 GeV�1

and gJ=cDD ¼ 7:44 from Ref. [23]. Coupling gc ð3770ÞD �D�

can be related to gc ð3770ÞD �D via gc ð3770ÞD �D� ¼
gc ð3770ÞD �D= ~MD.

The �-�0 mixing is considered in a standard way:

� ¼ cos	Pjn �ni � sin	Pjs�si;
�0 ¼ sin	Pjn �ni þ cos	Pjs�si;

(4)

where jn �ni � ju �uþ d �di= ffiffiffi

2
p

, and the mixing angle 	P ¼
P þ arctanð ffiffiffi

2
p Þ with P ’ �24:6� or �� 11:5� for lin-

ear or quadratic mass relations, respectively [8]. We adopt
P ¼ �19:1� [21].
By investigating c ð3770Þ ! J=c�,��, and �� simul-

taneously, we expect to obtain constraints on the theory by
which we can then make predictions for other VP chan-
nels. Although these decays are OZI-rule-suppressed pro-
cesses, their kinematics are slightly different. The
production of J=c in c ð3770Þ ! J=c� suggests that it
is a very soft process. The momentum carried by the final-
state meson in the c ð3770Þ rest frame is p ¼ 0:359 GeV,
which is much less than the masses of both � and J=c .
Thus, we argue that c ð3770Þ ! J=c� is dominated by the
intermediate meson loops. Note that the t-channel loops
suffer from divergence [24]. We then introduce a cutoff in
the loop integrals via a standard dipole form factor,

F ðq2Þ ¼
�

�2 �m2
ex

�2 � q2

�

2
; (5)

where� � mex þ 	�QCD, with�QCD ¼ 0:22 GeV.mex is

the mass of the exchanged meson, and 	 is a parameter to
be determined by experimental data for c ð3770Þ !
J=c�.
The s-channel meson loop contributions can be deter-

mined via the on-shell approximation. We find that the
branching ratio given by the c 0 � c ð3770Þ mixing in
c ð3770Þ ! J=c� is BR ¼ 1:3� 10�5, which is much
smaller than the t channel, and indicates the dominance
of the t channel. With BRexp

J=c� ¼ ð9:0� 4Þ � 10�4 [8],

	 ¼ 1:73 can be determined and the exclusive t channel
contributes 8:44� 10�4.
As follows, we fix 	 ¼ 1:73 in the form factors as an

overall parameter. Two aspects must be taken care of here.
First, since relatively large momentum transfers are in-

FIG. 2. The t- [(a) and (b)] and s-channel (c) meson loops in c ð3770Þ ! VP.
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volved in c ð3770Þ decays into light VP, the pQCD leading
contribution via OZI singly disconnected (SOZI) transi-
tions may play a role. This part contributes to the real part
of the transition amplitude and will not be dual with the
long-range intermediate meson loops as recognized by the
absorptive feature of the D �D rescattering in the on-shell
approximation. Second, for those light VP decay channels,
their SOZI amplitudes can be related to each other by the
flavor-blind assumption [25,26] for quark-gluon coupling,

g
�0�0

S :gK
�þK�

S :g
!�
S :g

!�0
S :g

��
S :g

��0
S

¼ 1:1: cos	P: sin	P:ð� sin	PÞ: cos	P; (6)

with the other isospin channels implied.
The transition amplitude for c ð3770Þ ! VP can be ex-

pressed as

Mfi ¼ ML þ ei�MSOZI � i½gL þ ei�gSF Sð ~pVÞ�
� "	
��P

	
c �



cP

�
V�

��
V =Mc ð3770Þ; (7)

where the property of the antisymmetric tensor is applied
to factorize out the effective couplings in the second line
and � is the phase angle between the meson loop and SOZI

amplitudes. A conventional form factor, F 2
Sð ~PVÞ �

expð� ~P2
V=8


2Þ with 
 ¼ 0:5 GeV, is applied for the

SOZI transition with ~PV the final three-vector momentum
in the c ð3770Þ rest frame [25,27].

With 	 ¼ 1:73 fixed, we can then determine the other

two parameters gS � g
�0�0

S ¼ 0:085 and � ¼ �66� by

experimental data, i.e., BR�� ¼ ð3:1� 0:7Þ � 10�4 [8]

and BR�� < 0:24% with C.L. of 90% [28]. In Table I

theoretical predictions for other VP decay branching ratios
as a maximum rate are presented. The exclusive results for
t- and s-channel meson loops and SOZI processes are also
listed. We also include isospin-violating channels J=c�0,

!�0, �0�, and �0�0, which can be recognized via the
nonexact cancellations between the charged and neutral
meson loop amplitudes due to the mass differences be-
tween the charged and neutral intermediate mesons. We do
not consider the ��0 channel since it involves both the
OZI doubly disconnected process and isospin violation;
thus, it will be strongly suppressed.
The following points can be learned from Table I:

(i) Different from the c ð2SÞ � c ð1DÞ mixing scheme
discussed in Refs. [10,11], our s-channel c ð3770Þ ! c 0
transition element is a complex number. If we neglect the
imaginary part due to the widths, we can extract the mixing
angle� ’ 4:57� in the convention of [11]. We find that the
t-channel transitions are much more important in
c ð3770Þ ! VP, while the s-channel contributions are gen-
erally small and even negligible in light VP channels. This
is mainly due to the small partial widths for c 0 decays into
light VP. The only non-negligible s channel is in
c ð3770Þ ! J=c�, which adds to the t channel construc-
tively. In contrast, the isospin-violating channel J=c�0

experiences a destructive interference between the t and
s channel. These results are useful for clarifying the sce-
nario of c ð2SÞ � c ð1DÞ mixing. (ii) The SOZI coupling
gS and phase angle � are strongly correlated. Applying the
BES data [28], we find that the meson loop and SOZI
amplitudes have constructive interferences in �� and
��0, but have destructive interferences in ��, K� �K þ
c:c:, and !�ð�0Þ, which are automatically given by the
SU(3) flavor symmetry. This is a strong constraint for our
model parameters, and a sum over the VP decays gives a
rate of �0:64%. By varying �, but keeping the �� rate
unchanged (i.e., gS will be changed), we obtain a lower
bound for the sum of branching ratios, �0:41%.
It is interesting to see that the intermediate D-meson

rescatterings indeed account for some deficit for the
non-D �D decay. In order to clarify this puzzling problem,
it is essential to have precise data for �� andK� �K þ c:c:A
search for these decays at BES-III [29] is thus strongly
recommended. Theoretical investigation of other channels
such as c ð3770Þ ! VS, VT, etc., is also needed as a
prediction and test of the proposed mechanism.
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Note added.—We would also like to mention that upon

the submission of this Letter, a work based on a similar
idea was submitted to the arXiv by Liu, Zhang, and Li [30].
There, the authors focus on the intermediate D �D rescatter-
ing in an on-shell approximation and investigate its con-
tributions to J=c�, ��, and J=c��. In our case, we
calculate all VP channels with full loop integrals and a

TABLE I. Branching ratios for c ð3770Þ ! VP calculated for
different mechanisms. The values for J=c� and �� are fixed at
the central values of the experimental data [8], and the experi-
mental upper limit is taken for �� [28].

BR ð�10�4Þ t channel s channel SOZI Total

J=c� 8.44 0.13 	 	 	 9.0

J=c�0 0.1 2:58� 10�2 	 	 	 4:4� 10�2

�� 34.45 7:69� 10�5 8.53 24.0

K�þK� þ c:c 10.97 6:83� 10�6 5.72 8.91

K�0 �K0 þ c:c 11.80 4:38� 10�5 5.72 9.90

�� 1.25 1:13� 10�5 1.16 3.1

��0 0.87 2:53� 10�5 1.86 3.78

!� 6.83 9:64� 10�6 1.88 4.69

!�0 0.58 2:87� 10�5 0.97 0.39

�� 1:88� 10�2 1:77� 10�5 	 	 	 1:8� 10�2

��0 1:08� 10�2 1:54� 10�5 	 	 	 1:0� 10�2

!�0 2:57� 10�2 1:82� 10�5 	 	 	 2:5� 10�2

Sum 75.34 0.16 25.84 63.87
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reasonable estimate of the SOZI processes based on a
stringent constraint on the model parameters.
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