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We describe a scalable, high-speed, and robust architecture for measurement-based quantum computing

with trapped ions. Measurement-based architectures offer a way to speed up operation of a quantum

computer significantly by parallelizing the slow entangling operations and transferring the speed require-

ment to fast measurement of qubits. We show that a 3D cluster state suitable for fault-tolerant

measurement-based quantum computing can be implemented on a 2D array of ion traps. We propose

the projective measurement of ions via multiphoton photoionization for nanosecond operation and discuss

the viability of such a scheme for Ca ions.
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The rapid progress in quantum-information processing
systems has been fueled by the realization that the algo-
rithmic complexity of a quantum computer scales polyno-
mially with the size of certain important problems rather
than exponentially [1]. This presents a tremendous advan-
tage for large problems that are so far solvable only on a
time scale of years. However, the practical utility of large-
scale quantum computers will also depend on their ability
to compete with current classical computers. Consider, for
example, Shor’s factoring algorithm—the composite inte-
ger RSA640 (N ¼ 640 bits) requires �32N3 ¼ 8:4� 109

[2] operations (neglecting error correction overheads and
improved scaling with other trade-offs [3]). To compete
with a distributed network that can factor RSA640 in
5 months [4], quantum operations on time scales of
1.5 ms are required; to factor RSA640 in, say, 5 min,
operation time scales have to be improved to 36 ns. Error
correction overheads will further worsen time scales. In
other words, nanosecond operations are essential for prac-
tical large-scale quantum computers.

In this Letter, we address this speed issue for one of the
most promising quantum-computing (QC) implementa-
tions, namely, ion traps [5]. In contrast to standard quantum
circuit schemes considered so far for ion traps, we consider
measurement-based QC paradigms [6], where the actual
processor speed is mostly determined by the measurement
time scales. We demonstrate (i) this one-way quantum
computing (1WQC) scheme has significant advantages
for ion-trap QC; (ii) that a 3D cluster state for fault-tolerant
computing can be efficiently implemented in 2D ion-trap
architectures; and (iii) that multiphoton ionization and
detection of the emitted electron using the ion-trap poten-
tial as a guide can significantly speed up high-efficiency
measurements to nanosecond time scales.

Ion-trap QC [5] has surpassed several major milestones
on the QC road map [7]. Recent experiments have en-
tangled up to eight ions [8], demonstrated above 99%
fidelity gates [9,10], and coherence times of 10–34 s
[11,12]. Distant entanglement of ions via interference of
emitted photon pairs has been demonstrated [13] and scal-

able chip-based trap architectures are being implemented
[14,15]. However, time scales for logic-gate operations
are slow, on the order of 1–100 �s for entangling gates
[5,16] and 1 �s to 10 ms for single-qubit operations and
measurement [10]. Moreover, the shuttling of ions re-
quired in scalable architectures puts even worse timing
constraints on two-qubit gates (50–100 �s) [17].
Measurement-based QC paradigms [6] offer a way around
this because the computational resource, a multipartite
entangled cluster state, can be created via entangling op-
eration applied in parallel and offline. This has the tre-
mendous advantage that the usual requirement to avoid
motional heating in ion traps is restricted to this first
entangling step and is removed from the actual QC pro-
cess. In the 1WQC protocol, processing of information
occurs through measuring qubits in a prescribed basis,
combined with feedforward of measurement outcomes.
The processor speed is determined by measurement, read-
out, and classical processing time scales which, as we
show, should be possible on a nanosecond time scale.
Methods for error correction have recently been proposed
which introduce the necessity for 3D cluster states [18]. We
describe how a 3D cluster can be efficiently implemented
in a 2D architecture without resorting to time as third
dimension [19].
In the 1WQC paradigm, all entanglement operations are

done in parallel and offline before commencement of the
algorithm. This multipartite entangled cluster state is cre-
ated by shuttling ions in a 2D lattice geometry into close
proximity and by applying standard controlled-PHASE
(CPHASE) gates [5,16,20] between neighboring atoms. In
such a 2D array, measurements of the qubits in different
bases and feedforward of measurement outcomes allow the
simulation of a universal quantum circuit [6]. While this
2D cluster state represents a universal resource, topological
encodings in 3D structures are required for error correction
with high thresholds [18]. More recently, quasi-2D fault-
tolerant cluster states, where the third dimension is re-
placed by time, were introduced [19], effectively mapping
a 3D cluster to a 2D array. However, in this scheme, the
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two-qubit gates required during the measurement-based
QC will nullify the potential for speed-up over circuit-
based QC.

Because of the requirements of laser access, implement-
ing a full 3D architecture for fault-tolerant 1WQC using
ion traps would be extremely challenging. Instead, a 3D
cluster state can be implemented efficiently in a 2D ion-
trap array with non-nearest-neighbor entanglement opera-
tions. The architecture required for implementing the
1WQC paradigm is similar to the scalable ion-trap archi-
tectures proposed in [14]. This architecture requires inher-
ently slow shuttling of ions [17]. For faster transport, better
fidelity, and to keep ions in the motional ground state, 120�
Y junctions in a 2D hexagonal array (Fig. 1) are preferable
to 90� junctions in a square lattice [15].

A full 3D cluster state can be created in this universal
[21] hexagonal 2D architecture in the following way: If we
do not restrict ourselves to nearest neighbor entangling
operation, then the hexagonal lattice can be broken down
into two rhombic lattice sublattices with distance 2d be-
tween sites as illustrated in Fig. 1(b). Each of these two
sublattices then represents a single 2D layer of a 3D cluster
state. To create each layer of cluster state, atoms in each
sublattice have to be entangled with its sublattice neigh-
bors, 2d away, as described in Fig. 1(a). In each sublattice,
a sequence of four CPHASE gates applied in parallel across
the array entangles every ion with all four sublattice neigh-

bors, creating a full 2D cluster state layer [6]. Entan-
glement between different layers can be accomplished by
simply entangling ions belonging to different sublattices
(indicated by numbers 1–8) in just two parallel applica-
tions of a series of CPHASE gates as indicated by thick black
lines in Fig. 1(b). The number of layers can be increased
from 2 to 2n2 by increasing the elementary cell of each
sublattice by a factor n. This corresponds to entangling
atoms separated by a distance 2nd [see Fig. 1(a)]. Note that
the distance only scales as 2n, whereas the number of
layers is 2n2. An example of an 8-layer system is shown
in Fig. 1(b) for a distance of 4d between entangled atoms.
Another important feature is the possibility to entangle the
first and last layer of the 3D cluster state, thereby directly
and efficiently creating a topological structure as required
in [18,19]. The number of parallel operation and thus the
time to create this 3D cluster state offline is constant in the
number of qubits, and only requires six CPHASE gates
cycles applied in parallel to all neighboring qubits.
In addition to standard entangling operation between

nearby ions, probabilistic distant entangling operations
[13,22] could be used to connect 3D ‘‘subclusters,’’ which
are created in separate locations and contain 103–104 qu-
bits. Building up a large cluster this way (1) avoids corre-
lation errors across the entire cluster state, (2) protects the
unmeasured cluster from disturbance due to the ionization
measurements, and (3) allows for slightly delayed prepa-
ration to avoid storage errors as well as repreparation of
subclusters while others are measured. This fulfills the
requirements of the more stringent error model in [18],
which includes errors due to correlations and storage (error
model 2 [18]). Because of disparate time scales between
measurement (�ns) and decoherence time (�s) storage er-
rors are kept well below 10�4 even when measuring up to
104 qubits. In addition, decoherence free subspaces have
been successfully demonstrated for ions [12] as well as for
1WQC [23]. A detailed error analysis with accurate thresh-
olds and overheads is planned for future work.
Measurements of atomic qubits are usually achieved in

two steps: A single-qubit rotation, followed by projection
into one of the two-qubit states. We assume encoding in the
optical S-D transition in alkali-metal-like ions to facilitate
nanosecond single qubit rotations and readout using light
pulses with a bandwidth much smaller than the energy
separation between the S and D states. To increase deco-
herence time a mixture of encodings would be conceivable,
i.e., long-time storage in the hyperfine state and short-time
storage in S-D states for faster manipulation. Transitions
between the S ground state and metastable D state are
electric-dipole forbidden with long coherence times
(� seconds). Single-qubit rotations on the S-D transition
can be achieved via quadrupole-allowed transitions or two-
photon transitions using the intermediate P1=2 or P3=2

states. Quadrupole Rabi frequencies�E2
SD in current experi-

ments are 35.5 kHz for fairly low irradiance of about
6 W=cm2 [10]. To achieve manipulations on a 2 ns time
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FIG. 1 (color online). (a) Hexagonal ion-trap architecture with
120� junctions. Single channel electron multiplier (CEM) de-
tectors for high-efficiency electron detection are indicated. For
entangling operations, atoms can be shuttled into close proximity
with high fidelity to remain in the ground state. To entangle non-
nearest-neighbor atoms, one atom could be moved out of the way
as indicated by arrows. Alternatively, swap operations between
qubits at a junction could minimize movement of atoms.
(b) Underlying hexagonal array and resulting cluster states for
non-nearest-neighbor interactions. The hexagonal array is de-
composed into two rhombic lattices (red solid and blue dashed
lines show the edges of the cluster state layers). Each lattice can
again be broken down into further sublattices. For example, 4
sublattices of the solid line rhombic lattice are indicated by
circles, squares, triangles, and diamonds. These, together with
4 sublattices of the dashed rhombic lattice, can create an eight-
layer 3D cluster state (see text for details). Qubits belonging to
the eight different layers are numbered from 1 to 8.
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scale via quadrupole fields would require extremely high
irradiances of 109 W=cm2. For Raman transitions, detuned
104 linewidths from the P states, an irradiance of
105 W=cm2 is sufficient to achieve manipulations on a
1 ns time scale.

A more severe timing limit and one that requires a more
drastic shift in approach, is due to the fluorescence readout
in ion systems where one of the two-qubit states is coupled
to a shelving state via a cycling transition [10]. The time
scales for this are limited by the lifetimes of dipole tran-
sitions, and photon-collection and photodetection efficien-
cies to a few microseconds. However, state-dependent
multiphoton ionization and subsequent detection of the
electron allow measurement on nanosecond time scales.
Consider a resonant four-photon ionization of Caþ in the
S state (see Fig. 2) using easily accessible 380–410 nm
excitation wavelengths. From the level diagram in Fig. 2,
it is immediately apparent that a multiphoton ionization
transition from the 4S1=2 ground state should be possible

for fairly low intensities. On the other hand photoioniza-
tion of the D level is strongly suppressed, as the detunings
are an order of magnitude larger for each transition. For
380–410 nm, the four-photon transition is close to reso-
nance with several levels for ionizing atoms in the 4S1=2
state. We can choose a resonance condition with the 4P1=2

state at 397 nm, the 5S1=2 state at 383 nm, or the 6P1=2 and

6P3=2 states at 403 nm. A broadband frequency-doubled

Ti:sapphire with appropriate pulse shaping would be able
to address all three resonances and exploit interference
between ionization paths to improve the ionization fidelity
and state discrimination [24].

Using the effective operator method [25], the resonant
ionization probability for the S state when applying laser
light of irradiance I and � polarization is NS

� ¼P
�4�I

4ðJ��Þ2 þ 4�I2K2=L2. The nonresonant contribu-
tions are described by transition probabilities J�� for tran-
sitions to continua states with different angular momentum
� ¼ S, P, D, etc.; L, K are resonant transition operators
[25]. For the nonresonant D-state ionization, only an inco-

herent sum of the transition rates, ND
� ¼ P

�4�ðJ��Þ2I4
need be considered. We include only near-resonance tran-
sitions in our estimate of the ionization rates [26] (non-
listed matrix elements have been estimated by simple
scaling). Using this basic estimate, we expect the nonre-
sonant parts of photoionization probability to be a factor of
at least ½ðJ��ÞS=ðJ��ÞD�2 ¼ 1600 lower for atoms in the D
state compared to the S state. This difference allows a very
high fidelity state discrimination as would be necessary for
a projective measurement. At resonance with the 6P1=2

state, we expect ionization rates on the order of NS
� �

109–1010 s�1 for peak irradiances of about I ¼
109 W=cm2. This allows for ionization on a femto- or
picosecond time scale with accessible laser intensities [24].
Photoionization and detection of ions has been used in

multiple experiments, e.g., for counting of atoms [27],
imaging of a gas of atoms [28], and even single atoms in
a cloud [29]. Detection of electrons via a single channel
electron multiplier (CEM) is generally more efficient
(> 99% efficiency) than detection of the heavy ion [30].
A CEM also features detector dead times of nanoseconds
or less [30]. Not only is the detection probability higher for
the freed electron compared to the ion, but electrons move
faster, so that the time between ionization and detection is
less. Stability of a particle in the ion trap requires usually
the characteristic trap parameter qx to be in the range 0<
qx < 1. The electron is unstable in the dynamic trapping

potential as qex /
ffiffiffiffiffiffiffiffiffiffiffi
e=me

p
is 2 orders of magnitude larger

than the one for the ion qionx / ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e=mion

p
. The rf frequency

!rf for the ion-trap field is typically on the order of 20–
30 MHz [10] so that the characteristic time scale for the

electron motion t0 � 1=!rf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
me=mion

p
in the ion trap is

about 0:5 ns. The ion-trap field is therefore time inde-
pendent on the electron detection time scale, i.e., the
electron moves in an almost time-independent saddle-point
potential and will be ejected along the saddle. To describe
the motion of the electron in this potential, assume all
momentum from the four-photon ionization is transferred
to the electron in the positive x direction (the inertia of the
trapped ion is effectively infinite); the corresponding initial
electron velocity is then 7� 103 m=s. The electron is
ejected when the dynamic trap potential is antitrapping in
the x direction and trapping in the y direction (with a static
weak trap field in the longitudinal z direction [10]). A time-
dependent simulation of the electron wave-packet dynam-
ics shows that the ion-trap potential can act as a guide for
the electron onto the CEM detectors (see Fig. 3). Our
simulations show that the electron remains localized in
the y direction with the typical wave packet breathing
due to squeezing in the y direction. In the x direction, the
electron wave packet spreads and ‘‘slides’’ down the saddle
of the trapping potential due to the initial momentum kick
of the photoionization photons. If we place two 20 �m size
CEM detector about 30 �m away from the trap center
close to the trap-electrodes on the positive and negative
x axis, we can estimate above 99% detection efficiency
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FIG. 2 (color online). Relevant levels for ionization-readout
scheme of the (a) S state and (b) D state in 43Caþ. Contributing
transitions are shown with black arrows. The ionization thresh-
old at 11.87 eV is indicated as thick solid line.
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within 3 ns [Fig. 3(d)]. Because of trap geometry, place-
ment of detectors may be restricted, but the initial con-
ditions (direction of photoionization beam, timing of
ionization) should make it possible to guide the electron
into the detector using the existing trap-field.

For above ionization readout, we also need to consider
what happens to the remaining doubly ionized Ca2þ atom.

The trap parameters qx which change by a factor of
ffiffiffi
2

p
from Caþ to Ca2þ can be chosen so that both Caþ and
Ca2þ are trapped in a stable regime [10]. However, prac-
tical constraints such minimization of micromotion [10],
may dictate parameters that would result in the loss of
Ca2þ. The relevant time scale for the ion to become
unstable in the trap is slower than 1=!rf (0:1–1 �s). The
measurement time is much shorter and qubit readout for
the one-way QC process will have moved on to other
qubits, 10–100 qubits farther away, so that measurements
are not affected. Finally, each ion is located in separate
regions of the architecture (several 100 �m apart) and
coupling to other ions can be neglected. The one drawback
of this scheme is that the trap would have to be reloaded
before running another algorithm. Distant entanglement
[13] can be used to connect smaller clusters which could
be reloaded after usage while others are measured.

Our results certainly indicate that measurement-based
quantum computing with nanosecond measurement times
presents an extremely promising solution to the speed
constraints in quantum computing. The proposed nano-
second readout is immediately applicable to loophole-
free tests of Bell inequalities using ions only few meters

apart [31]. For quantum computing, a detailed experimen-
tal analysis is needed to determine realistic error rates, and
more theoretical work is on it way to determine accurate
error correction thresholds and overheads.
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[8] H. Häffner et al., Nature (London) 438, 643 (2005).
[9] J. Benhelm et al., Nature Phys. 4, 463 (2008).
[10] F. Schmidt-Kaler et al., Appl. Phys. B 77, 789 (2003).
[11] C. Langer et al., Phys. Rev. Lett. 95, 060502 (2005).
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FIG. 3 (color online). (a)–(c) Time evolution of the emitted
electron wave packet in the ion-trap saddle potential at three
different times, (a) 0.25 ns, (b) 1.0 ns, (c) 1.5 ns. We assume an
initial 4-photon kick of the electrons in the positive x direction.
(d) If we place one detector 30 �m away on the x axis, we can
detect the electron with up to 90% fidelity [see dashed line in
(d)]. A second detector can be placed on the negative x axis to
detect the part of the wave packet that escaped along the saddle
in this direction. The detection efficiency is then above 99%
within a 3 ns time window [solid line in (d)].
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