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Many authors have modeled regional earthquake interevent times using a gamma distribution, whereby

data collapse occurs under a simple rescaling of the data from different regions or time periods. We show,

using earthquake data and simulations, that the distribution is fundamentally a bimodal mixture

distribution dominated by correlated aftershocks at short waiting times and independent events at longer

times. The much-discussed power-law segment often arises as a crossover between these two. We explain

the variation of the distribution with region size and show that it is not universal.
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Over the past decade, much scientific attention has
been focused on the distribution of waiting times between
earthquake events within a region or catalog [1–6], whose
form and origin have great importance for the develop-
ment of physical or statistical models of earthquake dy-
namics. Most authors have explored these interevent
times by fitting the empirical histograms to a gamma
distribution, which has led to the suggestion of universality
[1–3,7,8], even down to the scale of laboratory rock frac-
ture experiments [9]. The idea that has enthusiastically
been pursued is that a rescaling involving region size and
magnitude cutoff [1], or simply the mean event rate [2],
produces data collapse onto a universal gamma distribu-
tion. Much of this analysis, however, has been restricted to
the use of data with an apparently stationary event rate
(e.g., [2,8]) since mean event rates are otherwise poorly
constrained; there is some evidence that nonstationary data
analyzed in the method of Bak et al. do not collapse [10].
Further, it is common also to omit the shortest inter-
event times from the analysis [1,2]; if these interevent
times are included, the approximate data collapse is broken
[4]. These common restrictions tend to filter out high rates
of aftershocks and thereby introduce a strong selection
bias in the data, leading us to question the proposed uni-
versality. Recent analytic studies on the Epidemic-Type
Aftershock Sequences (ETAS) model, a process-based
stochastic earthquake occurrence model [11], have indi-
cated that the interevent time distribution is not universal,
but may be approximately universal under some circum-
stances [12,13].

We first explore afresh the structure of global and re-
gional earthquake interevent time series, then demonstrate
how the observed range of interevent time distributions
arise from well-known empirical laws of seismicity by
presenting comparative results from simulations of the
ETAS model. We show that the form of the interevent
time distribution in both earthquake catalogs and simula-
tions is generally bimodal, and is best described as a
mixture distribution, formed by the different patterns asso-
ciated with correlated and uncorrelated event pairs. The

frequently cited power-law segment in the distribution
[1,2,4] arises as a crossover between the two peaks of these
distributions. Support for bimodality in the distribution can
also be found in published literature involving real data
[4,14], simulations [15], and analytic studies on the ETAS
model [16], although no comment has, up to now, been
made on the bimodal shape. We draw attention to it and
present a physically-motivated, intuitive explanation for its
origin.
Simulations also provide a way around the stationar-

ity problem and allow us definitively to reject the hypothe-
sis of universality. While on short time scales the earth-
quake rate is inherently nonstationary, earthquakes in the
long term are a stationary, albeit nonlinear process; their
event rate converges slowly but definitely onto a well-
defined value [17]. Using lengthy ETAS simulations, we
are able to include strong aftershock activity in our inter-
event time sequence and still confidently define a mean
event rate. This is akin to using a small region (such as
Southern California) but recording data for a very long
time. As expected from the bimodality, the distributions
only approximately rescale with the mean event rate when
including a wider range of realistic seismic patterns in the
analysis than is available currently in real catalogs [17,18].
Interevent time histograms for a global and a regional

(Southern California) catalog are shown in Fig. 1. Our
preferred way for plotting the data is shown in the left
hand figures in which a clear distinction can be seen
between the global data, which forms a single-peaked
distribution, and the regional distribution, which appears
more bimodal. More commonly, interevent time distribu-
tions are plotted in the form of the right hand figures where
each frequency has been normalized by the bin width,
which tends to smooth out the two bumps so they cannot
readily be distinguished as such [Fig. 1(b) and 1(d)]. They
can however be seen in some rescaled plots in the literature
(e.g., [4]). It is important to highlight the evidence that
these are real features and that the much-discussed gamma
distribution is in fact only an approximate description of
the interevent time histogram.
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We will now explain these observations using synthetic
catalogs generated by the ETAS model. This is a stochastic
point-process model in which independent seeding events
(sometimes described as background events) occur as a
Poisson process in time with constant rate �, and all past
events above a threshold magnitudeM0 may produce after-
shocks. The magnitudes of all events are picked indepen-
dently from the power-law Gutenberg-Richter distribution,

logN ¼ a� bm; (1)

whereN is the number of events in a given time period with
magnitude � m, and a and b are constants. The model
incorporates the empirical observation that events tend to
cluster in time due to the time-dependent relaxation of the
crust by the release of triggered aftershocks, whose rate
nðtÞ decays as a power law in time after a sizeable event
according to the Omori law,

nðtÞ ¼ K

ðcþ tÞp ; (2)

where K, c, and p are constants and t refers to time.
Aftershock productivity depends exponentially on the
magnitude of the parent event so that larger events trigger
a greater number of aftershocks. Combining these relations
defines the conditional intensity function � for the ETAS
model,

�ðtjHtÞ¼�þA
X

i t<ti

exp½�ðmi�M0Þ�
�
1þ t� ti

c

��p
; (3)

where ti are the times of the past events and mi are their
magnitudes. Thus, the five ETAS parameters are �, the
independent event rate, c, p, and A ¼ K=cp, the Omori
parameters, and �, the productivity parameter. The model
does not make an arbitrary distinction between foreshocks,
mainshocks, and aftershocks, but rather regards all events
as capable of triggering further events according to these
simple rules. Thus, each independent event may result in a
cascade of nested aftershock sequences. We refer to such a
cascade as a global aftershock sequence, following pre-
vious authors [19].
In order to make comparisons with global and regional

earthquake data, we concentrate on the rate of independent
events, �, which is effectively the average frequency for
which global aftershock sequences are initiated. This pa-
rameter can be considered as a proxy for region size;
increasing � increases the extent to which global after-
shock sequences overlap in time (Fig. 2), with the effect
that a smaller proportion of the events that follow a given
event within a certain time period are correlated with it, as
is known to be the case for larger regions [20]. Because of
the spatial heterogeneity of earthquake occurrence, the
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FIG. 2 (color online). Cartoon illustrating how varying the
independent event rate changes the proportion of correlated to
independent interevent times as a consequence of the degree of
overlap of triggered aftershock sequences. (a) Regional catalogs
tend to resolve aftershock sequences; (b) Because of the in-
creased independent event rate, global catalogs tend to contain
more temporal overlapping and thus more independent inter-
event times.

1e−06 1e−04 1e−02 1e−00

1
10

10
0

10
00

10
00

0

Interevent time [days]

C
ou

nt

(c)

1e−06 1e−04 1e−02 1e−00

1e
+

00
1e

+
02

1e
+

04
1e

+
06

Interevent time [days]

C
ou

nt

(d)

1e−07 1e−05 1e−03 1e−01 1e+01

1
5

10
50

50
0

Interevent time [days]

C
ou

nt

(a)

1e−07 1e−05 1e−03 1e−01 1e+01

1e
+

01
1e

+
03

1e
+

05
1e

+
07

Interevent time [days]

C
ou

nt

(b)

Global
(PDE)

Regional
(SCEC)

Global
(PDE)

Regional
(SCEC)

Limited range
of IETs used by
Corral etc

FIG. 1. Interevent time histogram for the Southern California
Earthquake Center (SCEC) catalog, plotted (a) without and (b)
with normalization by the bin widths. Events larger than magni-
tude 2.4 between 1984 and 2000 were used. Interevent time
histogram for the worldwide Preliminary Determination of
Epicenters (PDE) catalog, plotted (c) without and (d) with
normalization by the bin widths. Events larger than magnitude
5.0 between 1970 and 2006 were used.
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actual relation between region size and effective � will be
nonlinear, but this is beyond the scope of this Letter.

The effect of � on the synthetic ETAS interevent time
distribution is shown in Fig. 3. For large�, the shape of the
distribution is similar to that of a Poisson process. For
intermediate values of �, the peak of the distribution
flattens out, and we see the familiar gamma distribution.
When � is made very small, however, the straight segment
becomes peaked in two places [Fig. 3(a)]. Thus, as we
decrease �, we progress from a unimodal to a bimodal
distribution, comparable to the progression from global
to regional scale in real data [compare Fig. 3(a) with
Figs. 1(a) and 1(c)].

The ETAS model allows us to perform further analysis
since we have knowledge of whether each event is inde-
pendent or triggered. We may therefore categorize each
interevent time as either correlated, defined as occurring
between two events belonging to the same global after-
shock sequence, or uncorrelated, occurring between events
of different aftershock sequences (see Fig. 2). Figure 4
shows these correlated and uncorrelated subsets superim-
posed onto the histograms, for various different values of
�. It is clear that the complicated distribution arises as the
sum of two physically motivated distributions which have
much simpler forms. The uncorrelated waiting times are
Poisson distributed, as expected for independent events.
The distribution of correlated waiting times, shown most
clearly in Fig. 4(d), has three segments: an exponential
increase towards a peak at short interevent times (which is
omitted from many published distribution plots), a power-
law decay segment, and an exponential tailoff at longer
times.

The variation of� produces a variation in (i) the position
of the tailoff in the correlated distribution, and (ii) the
relative sizes of the two subsets. This effect arises from
the interference of temporally overlapping aftershock se-

quences (Fig. 2). As � is increased, fewer aftershocks are
allowed to occur before each sequence is ‘‘interrupted’’ by
the onset of a new global sequence; the sequence of course
continues, but its power-law signature in the interevent
time series does not. The range of shapes arising from
combinations of these two simpler forms means that we
are able qualitatively to describe the distribution of earth-
quake interevent times as a function of a single reduced
parameter: the ratio of consecutive independent to depen-
dent events.
The approximate gamma function used to model the

overall interevent time distribution is not directly related
to the gamma distribution of correlated events; the effec-
tive power-law exponent for the former would depend on
the relative heights of the two distributions. This exponent
is therefore not directly related to the Omori p parameter,
but would be expected to change with the other parameters
as well in a complicated way.
Since it has become clear that the distribution is not

strictly a gamma distribution, the scaling relation proposed
by Corral obviously breaks down (Fig. 5). Note that we
have only considered variations of the seeding rate �
without changing the branching ratio. Given that the rate
of exponential decay at long interevent times is equal to the
fraction of independent events in the catalog [21], and that
the power-law slope for correlated events depends on the
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FIG. 3 (color online). Synthetic interevent time histograms for
three ETAS simulations with � values as indicated, plotted (a)
without and (b) with normalization by the bin widths. These few
examples demonstrate the range of behavior observed in real
earthquake interevent time distributions (Fig. 1). The other
ETAS parameters used were A ¼ 10, � ¼ 1, c ¼ 0:01, and p ¼
1:2.
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FIG. 4 (color online). Interevent time histograms for four
ETAS simulations with � values (a) 10.751, (b) 0.187,
(c) 0.047, and (d) 0.002, plotted without normalization by the
bin widths. Correlated (triangle) and uncorrelated (cross) inter-
event times are shown together with their sum, all interevent
times (circle). The other ETAS parameters used were A ¼ 10,
� ¼ 1, c ¼ 0:01, and p ¼ 1:2.
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parameter p [15,21,22], changing the other parameters
would be expected to further degrade the data collapse.
Raising the lower magnitude cutoff would also alter the
shape of the distribution somewhat.

Using the ETAS model and varying the rate of indepen-
dent events, �, has allowed us to explore the range of
temporal seismicity patterns that result from changing the
region size. We have shown that the interevent time distri-
bution is best described as a mixture distribution. It arises
as the sum of two contributions: gamma-distributed wait-
ing times between correlated event pairs, those belonging
to the same aftershock sequence, at short waiting times;
and exponentially distributed times between uncorrelated
events at longer times. The larger the region considered,
the higher the initiation rate of independent sequences, and
so the deeper the interleaving of separate aftershock se-
quences within the earthquake time series; sequential
events are thus more likely to be independent of each other
in catalogs from larger regions, resulting in a more
Poissonian distribution. Conversely, smaller regions have
highly nonrandom time series and show two distinct bumps
in their interevent time distributions. For intermediate
values of �, the crossover between the correlated and
uncorrelated curves can result in an apparent power law
in the overall distribution, whose exponent does not have a
simple relationship to any of the ETAS parameters.

Artificially selecting stationary periods from a time series
that is fundamentally nonstationary on the time scale con-
sidered introduces a strong sample bias that takes the form
of an apparently universal gamma distribution. The true
dependence of the distribution just on region size—ignor-
ing different effective branching ratios from one region to
another—is too complicated to fulfil a simple unified scal-
ing law.
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FIG. 5 (color online). Interevent time (IET) histograms for 11
ETAS simulations with � values as indicated, plotted with
normalization by the bin widths, rescaled by the mean event
rate r in the manner of Corral. Data collapse is not observed. The
other ETAS parameters used were A ¼ 10, � ¼ 1, c ¼ 0:01, and
p ¼ 1:2.
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