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The possibility of having bound states in the continuum was proposed by von Neumann and Wigner

shortly after the birth of quantum mechanics. However, it is still considered a rare special phenomenon.

Here we show how a lower bound to the number of bound states in the continuum can be calculated as a

function of the open two-dimensional potential parameters of quantum dots and optical waveguides. The

proof we present here holds for potentials that are symmetric in the perpendicular direction to the exits and

entrances of the quantum dots or the waveguides.
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The possibility of having bound states in the continuum
(BSCs) was proposed by von Neumann andWigner shortly
after the birth of quantum mechanics [1]. Bound states in
the continuum have positive energies when the threshold
energy for ionization or dissociation is set to be a zero
reference energy. Because of the analogies between elec-
tronics and photonics [2,3], the reference threshold energy
can be regarded as the index of refraction of the cladding in
optical fibers or the asymptote of the effective index of
refraction in waveguides [4]. The existence of bound states
in the continuum has been regarded as a mathematical
curiosity [5,6] for many years. About three decades ago
(fifty years after the first indication that quantum mechan-
ics permits the existence of bound states in continuum),
Stillinger [7] and Herrick [8] proposed to use superlattices
for constructing potentials which support bound states in
the continuum. However, it was not until 1992 that Capasso
and his co-workers from AT&T Bell Laboratories con-
ducted an experiment where an electronic bound state
embedded in the continuum was observed [9], in 2003
Cederbaum and his co-workers showed that conical inter-
sections can induce bound molecular states embedded in
the continuum [10], and in 2008 Marinica and his co-
workers showed that bound states in the continuum in
photonics should be feasible [11]. As has been pointed
out in [11], the BSCs in superlattices, as used in the study
of BSCs in electronics [9] and in photonics [11], result
from the direct and via-the-continuum interaction between
quasistationary (resonance) states [12–14] which gives
birth to resonances with practically infinite lifetimes.
However, it is known that it is possible to observe BSCs
in much more simple two-dimensional (2D) structures. For
example, Robnik showed a long time ago [15] that there
are an infinite number of BSCs for a point particle in a
plane region (V ¼ 0) between two infinite parallel hard
walls (V ¼ 1) and with a rectangular finite potential well
(V ¼ �V0). These BSCs disappear with any infinite small
perturbation that couples that two degrees of freedom and

breaks the separability of the original Hamiltonian. More
recently Sadreev, Bulgakov, and Rotter have shown that a
rectangular billiard that is opened by attaching single-
channel leads to it supports BSCs which may be observed
by varying the shape of the quantum billiard [16]. The
appearance of BSCs in two-dimensional potentials
Vðx; yÞ ¼ Vðx;�yÞ where the leads to the quantum dot
(QD) or waveguide (WG) are obtained for x ! �1 is
clear. The exact solutions are either odd or even parity
functions. Therefore, the Hamiltonian can be introduced as
two-diagonal (i.e., uncoupled) block Hamiltonian matri-
ces. The even y-parity eigenstates of the Hamiltonian are
associated with the eigenvectors of one block Hamiltonian
matrix, whereas the odd y-parity eigenstates are associated
with the eigenvectors of the second block of the
Hamiltonian matrix. It is clear that the ground bound state
of the second block Hamiltonian matrix (associated with
the odd parity solutions) has higher energy than the ground
bound state of the y-even-parity eigenstate. However, it is
not clear at all that the ground y-odd-parity bound state is
embedded in the continuum of the first block Hamiltonian
matrix which is associated with the y-even-parity solu-
tions. Only numerical calculations can show if indeed a
BSC has been obtained. Indeed numerical simulations [16]
have shown that a single BSC or more exist for specific
potential parameters of open rectangular potential. As a
limiting case of the same case studied in [16] see Ref. [17].
The purpose of our Letter is to give two types of algo-
rithms. One algorithm provides the condition that guaran-
tees the bound y-odd-parity states are embedded in the
continuum of the y-even-parity states. The second algo-
rithm provides a lower bound to the number of bound
y-odd-parity states which are embedded in the continuum
of the y-even-parity states.
The type of two-dimensional potentials that might sup-

port BSCs and can be constructed by well established
available fabrication is shown in Fig. 1. The theoretical
question which we answer here is how one can construct
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2D potentials that support at least N number of BSCs. The
proof we give in this Letter is based on the use of adiabatic
states of the 2D QD and WG potentials as a basis set in the
construction of the exact nonadiabatic BSC solutions. This
approach is very similar in its nature to the approach that
has been taken by Cederbaum and his co-workers [10]
where the Born-Oppenheimer states have been used as a
basis set in order to prove that non-Born-Oppenheimer
effects are responsible for the creation of molecular BSCs.

Figure 1 presents examples for 2D structures in a QD
[18,19] and WG [20] that, respectively, can be constructed
by using lithographic and planar silica over silicon tech-
nologies which have the symmetry structure which is
required by our proof to support BSCs. As an example of
a significant application of BSCs in optics we draw atten-
tion to the effort in fabrication semiconductor-based grat-
ing WG structures where the resonance spectral bandwidth
is as low as possible, i.e., the resonance lifetime is as large
as possible [21]. Such structures were placed inside a laser
cavity and served as a back mirror to determine laser
wavelength [21].

The exact 2D Hamiltonian for open systems in a basis set
of the adiabatic states.—Mass weighted coordinates are
used in order to emphasize the similarity between the
solutions of the time-independent Schrödinger equation
and the solutions of the scalar Maxwell equation
(Helmholtz equation)

Ĥ ¼ �@2x � @2y þ Vðx; yÞ; (1)

where the entrance or exit channels are in the x direction
and the potential is symmetric along the y and x directions,
Vðx; yÞ ¼ Vð�x;�yÞ. It is very important to mention that
the threshold energies are the bound states of Vðjxj>
L=2; yÞ (see the leads to the QD or WG in Fig. 1) since
Vðx; yÞ is a separable potential in this region. This is a
crucial point in our studies since inside the leads the
adiabatic solutions are the exact solutions of Eq. (1). We

will return to this point later. The exact eigenfunctions of
the Hamiltonian which are given by

Ĥ�jðx; yÞ ¼ Ej�jðx; yÞ; j ¼ 0; 1; . . . ; (2)

can be expanded in terms of the adiabatic states, ’nðy; xÞ,
�jðx; yÞ ¼

X
n¼0

�n;jðxÞ’nðy; xÞ: (3)

The adiabatic states are obtained by ignoring the�@2x term

in Ĥ and by treating the x coordinate as a parameter,

½�@2y þ Vðx; yÞ�’nðy; xÞ ¼ �adn ðxÞ’nðy; xÞ; (4)

where for any value of x the adiabatic states are orthonor-
mal. Because of the symmetrical properties of the potential

the eigenfunctions of the Hamiltonian Ĥ are either even or
odd functions in y; i.e., �jðx; yÞ ¼ ð�1Þj�jðx;�yÞ.
Similarly, the adiabatic functions are either even or odd
parity functions ’nðy; xÞ ¼ ð�1Þn’nð�y; xÞ; n ¼ 0; 1; . . . .
Consequently, the Hamiltonian matrix which is con-
structed from the adiabatic functions that are served here
as a basis set splits into two uncoupled block Hamiltonian

matrices HðevenÞ and HðoddÞ.
Consequently, H is constructed from two-diagonal

block Hamiltonian matrices as has been indicated above,

H ¼ HðevenÞ 0
0 HðoddÞ

 !
; (5)

where ½HðevenÞ�i;j ¼ h’n0¼2ijĤj’n¼2jiy and ½HðoddÞ�i;j ¼
h’n0¼2iþ1jĤj’n¼2jþ1iy where fi; jg ¼ 0; 1; . . . .

Conditions for bound states in the continuum.—As dis-
cussed above [below Eq. (1)] the threshold energies are the
adiabatic energies at the leads. In Fig. 1 the Hamiltonian
becomes separable when jxj>L=2. For smooth 2D poten-
tials (see the illustrative numerical example given below)
the 2D becomes separable as jxj ! 1. The lowest thresh-

old energy inHðevenÞ is given by Eth�even
0 ¼ limjxj!1�ad0 ðxÞ,

and therefore all eigenvalues with energies below Eth�even
0

are bound states that are even functions in y. Similarly, the

lowest threshold energy in HðoddÞ is given by Eth�odd
1 ¼

limjxj!1�ad1 ðxÞ, and therefore all eigenvalues with energies

below Eth�odd
1 are bound states that are odd functions in y.

The bound states of HðoddÞ which have energies within the
interval of

Eth�even
0 < Eodd

j < Eth�odd
1 (6)

are by definition BSCs of the exact Hamiltonian as defined
by Eq. (1). Equation (6) implies that the BSCs are obtained
provided that (1) Eodd

j are bound states (i.e., Eodd
j <

Eth�odd
1 ) and (2) Eodd

j are embedded in the continuum of

the lowest open channel for decay which is by definition
Eth�even
0 .

Condition (1) is satisfied by the requirement that the jth

eigenvalue of h1ðxÞ ¼ h’1jĤj’1iy are bound states. A

Dd

L

FIG. 1. A schematic diagram of the experimental setup for a
two-dimensional QD, 0:4 �m wide and 0:5 �m long, which was
produced at the Weizmann Institute of Science [18,19], and for a
tunable microwave scattering device constructed of a rectangular
cavity with leads attached symmetrically on opposite sides,
which was produced at Philipps-University at Marburg (Fig. 1
in Ref. [20]). The entrances and exits to the 2D QD or WG are
along the x axis, while y is perpendicular to x.
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proof will be provided below that if h’1jĤj’1i has N

bound states, then the exact HðoddÞ Hamiltonian matrix
has at least N bound states.

Condition (2) is satisfied by the requirement that the
lowest eigenvalue of the adiabatic Hamiltonian,

had1 ðxÞ ¼ �@2x þ �ad1 ðxÞ; (7)

is larger than the lowest threshold energy Eth�even
0 . This

condition is based on Epstein proof from 1966 that the
ground state of a 2D system in the adiabatic approximation
is a lower bound to the exact ground-state energy of the

system (EðoddÞ
0 in our case) [22].

A proof that if h’1jĤj’1iy has N bound states the exact

HðoddÞ Hamiltonian matrix has at least N bound states as

well.—The Hamiltonian matrix,HðoddÞ, which is associated
with the y-odd parity eigenfunctions of the exact
Hamiltonian given in Eq. (1), can be written as

H ðoddÞ ¼ h1 v
vy h2

� �
; (8)

where the modified adiabatic Hamiltonian h1ðxÞ is given

by h1ðxÞ ¼ h’1jĤj’1iy ¼ had1 ðxÞ þ VNA
1 ðxÞ where the

nonadiabatic potential term is given by VNA
1 ðxÞ ¼

�Rþ1
þ1 dy’�

1ðy; xÞ@2x’1ðy; xÞ. Similarly the matrix ele-

ments of h2 are given by ½h2�l0;lðxÞ ¼
�l0;lh’2lþ1jĤj’2lþ1iyfl0; lg ¼ 1; 2; 3; . . . . The elements

of the coupling off diagonal row vector v are given by

½v�lðxÞ ¼ h’1jĤj’2lþ1iy ¼ �h’1j@2xj’2lþ1iy �
2h’1j@xj’2lþ1iy@x. The eigenvalues of HðoddÞ, Ej [eigen-

values of the exact Hamiltonian given in Eq. (1) which are
associated with y-odd parity eigenfunctions] are the eigen-
values of an effective Hamiltonian,

½h1 þ vyĜðEjÞv��1;j ¼ Ej�1;j; (9)

where the Green operator is defined as ĜðEjÞ ¼
lim�!0þ½EjI� h2 þ i���1.

Equation (9) can be iteratively solved. The zeroth itera-
tion solution is obtained when in Eq. (9) the second term
which contains the Green operator is ignored, such that

h1ðxÞ�ð0Þ
1;jðxÞ ¼ Eð0Þ

j �ð0Þ
1;jðxÞ where Eð0Þ

j is a bound state

which is embedded below the threshold energy Eth�odd
1

and by varying the potential parameters we guarantee
that it is embedded above the threshold energy Eth�even

0 .

The first iteration solution is obtained by solving the fol-

lowing eigenvalue problem: ½h1 þ vyĜðEð0Þ
j Þv��ð1Þ

1;j ¼
Eð1Þ
j �ð1Þ

1;j. Under the condition that all eigenvalues of h2

are larger than the bound states Eð0Þ
j , then [vyĜðEð0Þ

j Þv] is
an attractive potential operator (one can verify it by calcu-
lating the trace of this operator while using the spectral

representation of the Green operator), and therefore Eð1Þ
j <

Eð0Þ
j . This inequality holds for any step of the iteration

procedure. Therefore, the iterative converged result pro-
vides the exact jth eigenvalue Ej which is lower than the

jth bound state of the modified adiabatic Hamiltonian ĥ1.
This proof can be generalized by applying the Hylleraas-
Undheim-MacDonald theorem [23] which proves that the
eigenvalues obtained from linearly variational calculations
are upper bounds to the same symmetry exact bound-state
eigenvalues. The variational calculations are carried out by
using the adiabatic eigenfunctions ’nðy; xÞ�n;jðxÞ as basis
functions. f’nðy; xÞg are defined in Eq. (4), whereas �n;jðxÞ
are eigenfunctions of h’njĤj’niy. The above results show
that by varying the potential parameters one can always get
bound states in the continuum for potentials that are sym-
metric to an inverse operation of an axis which is perpen-
dicular to the directional axis of the entrances and exits to
the QDs or WGs. The number of bound states in the
continuum depends on the shape of the y-symmetric 2D
potential. The number of the bound states in the continuum
can be controlled by varying the potential parameters since
while the threshold energies depend only on the width of
the leads (see Fig. 1) and are unaffected by the variation of
the size of the 2D QD or WG, the number of the adiabatic
bound states which are localized inside the QD or WG is
varied with the variation of the QD or WG parameters. For
the proof that a symmetric 1D potential well has always at
least one bound state, see, for example, Ref. [24]. It might
happen, however, that the nonadiabatic potential term in-
troduces potential barriers such that the lower bound to the
number of BSCs is zero. It should be emphasized here that
the conditions that guarantee that there are bound states
embedded in the continuum (BSCs) and the lower bound to
the number of BSCs can be calculated not only for 2D
potentials but also for 3D problems. The conditions derived
here are applicable not only to the cases where the poten-
tials have closed form analytical expressions (see, for
example, the numerical case studied in Ref. [16]) but
also for nonanalytical piecewise potentials as is shown,
for example, in Fig. 1 (see also Ref. [16]). For the appli-
cation of the adiabatic approximation to piecewise 2D
potentials as presented in Fig. 1 and for the calculations
of the nonadiabatic correction terms, see Ref. [25].
Illustrative numerical example.—For the sake of sim-

plicity we will demonstrate here the use of the conditions
that guarantee BSCs and the calculations of the lower
bound of the number of the BSCs for a simple 2D problem
�0:5ð@2x þ @2yÞ þ Vðx; yÞ where the analytical potential is

equal to zero, Vðx; yÞ ¼ 0, when�LðxÞ=2< y<þLðxÞ=2
and Vðx; yÞ ¼ 1 elsewhere [i.e., jyj � þLðxÞ=2]. We have
chosen

LðxÞ ¼ ðd=2Þ1=2=½1� d=ð2�2cosh2xÞ�1=2; (10)

where d1=2 is the width of the leads (see, for example,
Fig. 1). This expression for LðxÞ has been chosen to have a
solvable adiabatic Hamiltonian,
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Ĥ ad
ny ¼ �0:5@2x � 0:5n2y=cosh

2xþ ðny�Þ2=d: (11)

The adiabatic bound states’ energies are as for the Rosen-

Morse potential [26], Ead
ny;nx ¼ ðny�Þ2=d� ½2nx � 1�

ð1þ 4n2yÞ1=2�2 where nx ¼ 1; 2; . . . ; Nb and ny ¼ 1; 2; . . . .

The number of BSCs are obtained for ny ¼ 2, and it is the

maximal value of Nb for which 2Nb � 1� ffiffiffiffiffiffi
17

p
> 0 pro-

vided that Ead
ny¼2;nx

> �2=d. It is important to emphasize

that only the number of bound states of

Ĥ ad
ny¼2 þ V̂NA þ ð2�Þ2=d (12)

where the nonadiabatic potential term VNAðxÞ is included
provides a lower bound to the number of BSCs (provided
they are larger than �2=d, the threshold of the uncoupled
even y-symmetry channel). The nonadiabatic potential
term is defined as

VNAðxÞ ¼ �0:5
Z LðxÞ

0
dy’ad

nyðy; xÞ@2x’ad
nyðy; xÞ; (13)

where ’ad
nyðy; xÞ ¼ ½2=LðxÞ�1=2 sin½ny�=LðxÞ�. In our illus-

trative numerical example, VNAðxÞ¼ ½d2sinh2xð3þ
4n2y�

2Þ�=½24cosh2xð4�2cosh4x�4d�2cosh2xþd2Þ�. Our

calculations show that for d ¼ 12 the lower bound to the
number of BSCs is two but for d ¼ 12:4 it is one, although
the number of adiabatic bound states is still two. For d ¼
14:9 our calculations show that the lower bound to the
number of bound states is equal to zero in spite of the fact
that on the basis of simple (‘‘trivial’’) parity arguments one
may expect to have at least one BSC. In reality, due to
external uncontrolled perturbations the bound states in the
continuum are turned to be metastable (resonance) states
with a finite lifetime [27]. By adding nonuniform potential
inside the WG or QD (e.g., by using a gate bias for
electrons or by adding some nonuniform dielectric material
for light), the symmetry of the 2D potentials is deformed in
such a way that one can control the widths of the BSCs.
The ability to control the finite width (inverse lifetime) of a
resonance state enables the construction of a device with an
almost complete transmission of electrons through QDs or
an almost complete transmission of waves through an open
WG. Also by using suitable potential parameters one is
able to construct devices that have a complete reflection of
the electrons from a 2D QD or a complete reflection of
waves from a 2DWG. The fact that the width of a selected
resonance state can be reduced almost to zero (an almost
bound state in the continuum is produced) opens a door for
the construction of diodes and optical switches that operate
with a very narrow band width, or reflectors or mirrors for a
selected frequency electromagnetic radiation.
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