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We report a thermoelectric study of graphene in both zero and applied magnetic fields. As a direct

consequence of the linear dispersion of massless particles, we find that the Seebeck coefficient

Sxx diverges with 1=
ffiffiffiffiffiffiffiffiffiffiffijn2Dj

p
, where n2D is the carrier density. We observe a very large Nernst signal

Sxy (�50 �V=K at 8 T) at the Dirac point, and an oscillatory dependence of both Sxx and Sxy on n2D at

low temperatures. Our results underscore the anomalous thermoelectric transport in graphene, which may

be used as a highly sensitive probe for impurity bands near the Dirac point.
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The unusual band structure of graphene gives rise to a
host of intriguing phenomena in electrical transport prop-
erties that have been under extensive experimental inves-
tigations [1–6]. In solids, both charge and heat flows are
simultaneously generated when an electrochemical poten-
tial or a temperature gradient is present, leading to addi-
tional effects. Fundamentally related to the electrical
conductivity, other transport coefficients such as thermal
conductivity and thermoelectric coefficients are also deter-
mined by the band structure and scattering mechanisms.
Thermoelectric coefficients, in particular, involve the en-
ergy derivatives of the electrical transport counterparts
such as the conductivity � and the Hall angle �H. The
anomalies in the latter are very often amplified and cause
markedly distinct features in the former near the Dirac
point. Furthermore, in the regime where the Mott relation
is applicable, the relationship between the measured elec-
trical conductivity and the Seebeck coefficient reveals how
the chemical potential depends on the gate voltage or
carrier density, which is dictated by the energy dispersion.
Therefore, the thermoelectric transport coefficients can
offer unique information and are complementary to the
electrical transport coefficients. A number of theoretical
predictions have been made on transport coefficients other
than electrical conductivities in graphene [7–9] which to
date remain experimentally unexplored.

Single-layer graphene sheets are mechanically exfoli-
ated onto degenerately doped silicon substrates that are
covered with 300 nm of silicon dioxide. After locating
suitable graphene sheets, we perform standard electron-
beam lithography to attach electrodes in Hall-bar geome-
try. The electrodes consist of 7 nm of Cr and 100 nm of Au,
and also serve as local thermometers. A microfabricated
heater located on the right of Fig. 1(a) generates nearly
parallel constant temperature contours along the graphene
sample. The thermal voltage generated is measured across
the two parallel Cr=Au electrodes �20 �m apart. These
also double as local thermometers whose resistance is
measured by the four-point method. A temperature differ-
ence of �10 mK between the two Cr=Au wires can be
readily measured for temperature T > 10 K. An additional

pair of Cr=Au leads is used for transverse (Hall or Nernst)
voltage measurements. All measurements were carried out
in a cryostat with T ranging from 1.5 to 300 K and
magnetic field B up to 8 T. In this work, the results are
from two representative devices (#1 and #2) out of ap-
proximately two dozen fabricated devices. They are single-
layer graphene as determined from optical images, and are
often corroborated by the well-defined half-integer quan-
tum Hall effect at low temperature. The carrier mobility�c

is typically �3000 cm2=V s.
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FIG. 1 (color). (a) SEM image and circuit schematic of a
graphene device for thermoelectric measurements. (b) �T vs
thermovoltage change 4Vth for a series of heater power steps at
255 K and zero gate voltage. The linear fit of this curve gives the
thermopower of 39 �V=K.
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We generate a temperature gradient and measure both
the temperature difference �T and thermal voltage change
�Vth. Fitting a straight line to the �Vth vs �T data, we

extract the Seebeck coefficient Sxx ¼ � �Vth

�T from the slope

[Fig. 1(b)] [10]. At zero magnetic field, � exhibits the
characteristic minimum at Vg � VD, the Dirac point.

Figure 2(a) shows Vth as a function of Vg for three tem-

peratures. Vth undergoes a sign change at the Dirac point
Vg ¼ VD ¼ 10 V, indicating the carrier type changes from

hole to electron as Vg-VD is swept from negative to posi-

tive. Vth has a finite slope near VD over a 20 V range in Vg

which corresponds to �� 100 meV change in chemical
potential � measured from the Dirac point. This region
coincides with the minimum in �, where charged impuri-
ties modify the conductivity [11–14]. As Vg is further away

from VD on both sides, the magnitude of Vth decreases,

scaling approximately with 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jVg � VDj

q
[dashed line in

Fig. 2(a)]. This Vg dependence is more noticeable in the

linear dependence of 1=V2
th on Vg [Fig. 2(b)]. The dashed

lines are the power-law fits with exponent�0:95 and cross
zero in the vicinity of the Dirac point from both sides,
indicating a diverging behavior of Sxx. Note that near the

Dirac point, Vth crosses zero, and the 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jVg � VDj

q
de-

pendence breaks down, as denoted by the hatched region.
For comparison, the same Vth data are also plotted as
1=jVthj vs Vg in Fig. 2(c), and the straight lines are drawn

in the linear region. Clearly, the 1=V2
th plot shows a better

linear relationship with Vg over the whole range. In addi-

tion, 1=V2
th extrapolates to zero at almost the same Vg for

different temperatures, but 1=jVthj does not.
The fact that jVthj or jSxxj diverges as 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jVg � VDj

q
is

actually a direct manifestation of the linear dispersion of
the Dirac particles in graphene. Let us assume �� j�j�,
which is sufficiently general to include both dirty (�� 2)
and clean (�� 1) limits [12,13]. For degenerate electron

systems, we expect the Mott relation Sxx ¼ � �2k2BT

3e
@ ln�ð�Þ

@�

to hold, yielding Sxx �� 1
� for highly doped regimes. On

the other hand, for a 2D system with a linear dispersion

relation, then we expect� ¼ @vF
ffiffiffiffiffiffiffiffiffiffiffi
n2D�

p / �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jVg � VDj

q
,

where the þð�Þ sign corresponds to the electron- (hole-)
doped regime, and vF is the Fermi velocity. Combining

these relations, we have Sxx � �sgnð�Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jVg�VDj

p . This is in contrast

to the ordinary 2D electron systems with a quadratic dis-
persion relation, in which � / n2D, and hence Sxx ��1
Vg�VD

. From this diverging behavior of Sxx, we can con-

clude that the dispersion relation is linear rather than
quadratic, as expected for Dirac particles. It is worth
noting that the exponent � is absorbed in the prefac-
tor of Sxx and does not affect the functional dependence
of Sxx, as is the case in �. This makes the thermoelectric
transport uniquely sensitive to the electronic band
structure.

Not every device shows the electron-hole symmetry
shown in Fig. 2. Figure 3(a) displays Sxx vs Vg of a differ-

ent device with VD � 33 V for several values of T ranging
from 11 to 255 K. Away from VD on the hole side, Sxx
decreases with decreasing Vg, similar to the behavior of the

previous device. In contrast, Sxx stays flat on the electron
side, indicating a strong electron-hole asymmetry as seen
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FIG. 2 (color). (a) Vth vs Vg for three different temperatures.
The 16 K data (red circle) were multiplied by a factor of 5. The

dashed lines are the fits described by jSxxj � 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jVg � VDj

q
.

(b) 1=V2
th vs Vg plot for the same data shown in (a). The shaded

area is for jVg � VDj< 10 V. Green dashed lines are the best

power-law fits with exponent �0:95. (c) 1=jVthj vs Vg plot for

the same data in (a). Green dashed lines are straight lines as
guides to the eye.
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in � by others [12]. Near VD, we observe a broad transition
region in Sxx connecting the electron- to hole-doped re-
gimes. Furthermore, Sxx follows different T dependence
for different Vg [in Fig. 3(b)]. Near VD, the magnitude of

Sxx is close to zero. Away from VD on the hole side, e.g., at
Vg ¼ 0 V or�33 V left of VD, Sxx is nearly a straight line

for the whole temperature range. As Vg approaches VD

from the hole side, Sxx begins to deviate from the linear T
dependence at progressively lower temperatures. On the
electron side, however, even at Vg ¼ 60 V (or�30 V right

of VD), Sxx remains nonlinear in T except at very low
temperatures.

The departure from the linear T dependence is an in-
dication of the potential breakdown of the Mott relation.
For this device, when jVg � VDj ¼ 30 V, j�j is about

160 meV measured from the Dirac point. It is reasonable
to expect high-order corrections in the Sommerfeld expan-
sion at relatively high temperature where the condition
j�j � kBT fails. For graphene, another relevant energy
scale is the bandwidth � of impurity states [15,16] near
the Dirac point. The Mott relation only holds if �

kBT
� 1,

which ensures � to be a slow-varying function of energy
over this band of impurity states [16]. In the impurity
scattering model, this band can be highly asymmetric due
to the finite scattering potential. Here, we attribute the
departure from the linear T dependence on the electron

side to the asymmetric nature of the band of impurity
states. For this reason, we only focus on the relatively
low-T region on the hole side where the Mott relation
apparently holds. Since Sxx is proportional to �T, and

inversely proportional to � or vF

ffiffiffiffiffiffiffiffiffiffiffijn2Dj
p

, we plot

Sxx
ffiffiffiffiffiffiffiffiffiffiffijn2Dj

p
(called �) vs T in the inset of Fig. 3(b).

Extracted from the slope, vF ranges from 0.8 to 1:7�
106 m=s depending on the value of � (from 1 to 2), which
is in good agreement with the values obtained by others
[17]. In relating Vg to n2D for above estimations, we use

n2D ¼ CgVg

e þ �n ¼ Cg

e ðVg � VDÞ, where Cg is the capaci-

tance per unit area and �n is the induced density by charged
impurities at the Dirac point. A value of Cg ¼
103 aF=�m2 is determined from our Hall data.
In a magnetic field, carriers diffusing under rT experi-

ence the Lorentz force, resulting in a nonzero transverse
voltage Vy. The transverse effect or the Nernst effect is

measured by Sxy ¼ � Ey

jrTj ¼
�Vy

�Tx
. In nonmagnetic metals,

Sxy is negligibly small (� 10 nV=K per tesla) [18]. In

ferromagnets, spin-orbit coupling can lead to a large spon-
taneous Nernst signal [19]. Here, we observe an exceed-
ingly large Nernst peak (�50 �V=K at 8 T) at the Dirac
point [Fig. 4(a)], and we attribute it to the unique band
structure of graphene. In classical transport, the Mott rela-

tion takes the following form [7,20]: Sxy ¼ � �2

3

k2BT

e �
ð@�H

@" Þ� ¼ �2k2BTB

3
@
@� ½ �

m� sgnð�Þ�. Sxy is directly proportional
to the energy derivative of the Hall angle �H or inversely
proportional to the cyclotron mass m�. For massless parti-
cles, the vanishing cyclotron mass can indeed lead to a

0 20 40 60
-40

-20

0

20

40

60

S
xx

(
V

 / 
K

)

V
g
 (V)

  11 K
  20 K
  30 K
  40 K
  50 K
 100 K
 200 K
 255 K

(a)

(b)

0 100 200 300
-40

0

40

80

0 50 100

0

1

2  45V
 50V
 55V
 59V

S
xx

(
V

 / 
K

)

  0V
  5V
 10V
 15V
 20V

T (K)

 Fit

(x
10

3  u
V

 K
-1
 m

-1
)

T (K)

vF= 0.8~1.7x106 m/s

FIG. 3 (color). (a) Vg dependence of longitudinal Seebeck
coefficient Sxx at different temperatures (11–255 K) and zero
magnetic field. (b) T dependence of Sxx at different gate volt-

ages. The inset is the T dependence of � ¼ Sxx
ffiffiffiffiffiffiffiffiffiffiffijn2Dj

p
at Vg ¼

0 V for low temperatures. The slope of the linear fit is propor-
tional to �=vF.
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FIG. 4 (color). (a) Vg dependence of Nernst signal Sxy at 160 K
with different magnetic fields (1–8 T). Inset: B dependence of
Sxy at Vg ¼ VD, and the red line is a linear fit. (b) Two-terminal

conductance G and thermopower Sxx vs carrier density n2D at
T ¼ 11 K and B ¼ 8 T. The corresponding Landau level index
n is shown on the top axis. (c) Sxx (black triangle) and Sxy (red

circle) vs Landau level index n for four different temperatures at
B ¼ 8 T.
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diverging behavior in Sxy. In graphene devices, however,

the anomaly is diminished by the impurity states near the
Dirac point. Recall that the Mott relation breaks down in
this region. Here, we estimate the magnitude of Sxy at the

Dirac point both from �H outside this region where the
Mott relation holds and from �. Since we have �H ¼
��cBsgnð�Þ (�c: carrier mobility), we obtain ��H �
2:2 with an 8 T magnetic field at 255 K. This change in
�H occurs over �� 204 meV as estimated from the width
of the conductance minimum, yielding Sxy � 68 �V=K.

This is in very good agreement with the experimentally
observed peak value (�50 �V=K). Additionally, �H is
directly proportional to B, which indicates a linear
B-field dependence in Sxy, with an estimated slope of

�5:4 �V=K�T at 160 K. Indeed, the linear B dependence
of Sxy is observed [Fig. 4(a)], and the slope of the straight

line is �6 �V=K�T. Similar to Sxx whose diverging be-
havior is greatly modified by the disorders, the anomaly in
Sxy depends on the carrier mobility as well as �. We expect

to see more pronounced anomalous behavior in both Sxx
and Sxy in cleaner samples.

At low temperatures and B ¼ 8 T, the device conduc-
tance exhibits clear quantum Hall plateaus as Vg is varied.

In this regime, we observe oscillations in Sxx [Figs. 4(b)
and 4(c)] that are reminiscent of the Shubnikov–de Hass
oscillations in 	xx [2,3], and the side peaks and dips in Sxy
that correlate with the oscillatory structures in Sxx. At T ¼
11 K, Sxx shows peaks (dips) as � is inside the broadened
Landau levels (LL) on the hole (electron) side. These peaks
(dips) correspond to the LL indices n ¼ 1 and n ¼ 2 for
holes (electrons). Sxy also changes sign at these fillings. It

is also worth noting that Sxx crosses zero at the Dirac point
(in the lowest LL), accompanied by an additional small dip
(peak) on the hole (electron) side. The origin of this feature
is unknown, but it could reveal some peculiarities of the
zeroth LL at high magnetic fields. In conventional 2D
electron systems, the observed Sxx peaks at the LL’s are
consistent with the calculations in the integer quantumHall
regime [21]. In graphene samples, the n ¼ 1 and n ¼ 2
peaks in Sxx on both electron and hole sides are also ex-
pected. However, we do not observe vanishing Sxx as � is
located between the two adjacent LL’s. The nonvanishing
Sxx was previously attributed to the activated behavior in
ordinary 2D electron systems. In our samples, the rela-
tively large magnitude of Sxx between the LL’s may be
caused by the broadened LL’s due to disorders. We expect
to see Sxx ! 0 at low temperatures and the predicted
activated behavior at high temperatures in cleaner samples.

As the temperature increases, the oscillations in Sxx and
Sxy becomeweaker, although the overall magnitude of both

Sxx and the central peak in Sxy increases [Fig. 4(c)]. As

discussed earlier, the characteristic width of the Nernst
peak is primarily determined by �, which is greater than
kBT. The Nernst width remains nearly unchanged as a
consequence.

In summary, the diverging behavior (jSxxj � 1=
ffiffiffiffiffiffiffiffiffiffiffijn2Dj

p
)

of the Seebeck coefficient along with the exceedingly large
Nernst peak at the Dirac point is characteristic of the
massless particles in graphene. With disorders, these ge-
neric anomalies are somewhat masked near the Dirac
point. However, the diverging behavior can be retrieved
from those quantities as the chemical potential approaches
the Dirac point. In higher mobility graphene samples, the
anomalies are expected to be more drastically pronounced.
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Note added.—During the preparation of this manuscript,

we became aware of related work with a similar conclusion
from Zuev et al. [22].
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