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The turbulent diffusion �T of a large-scale magnetic field B0 is numerically studied in two-dimensional

magnetohydrodynamic turbulence with an imposed shear flow. We demonstrate that a shear flow plays a

dual role, quenching transport through shear destruction and enhancing it via resonance. Specifically

without resonance �T / B�4
0 with no shear (rms shearing rate ¼ � ¼ 0) and �T / ��2:7 for B0 ¼ 0,

while with resonance �T / B�2
0 / ��2. These results indicate that the absence of resonance is respon-

sible for the most catastrophic reductions in transport.
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Fundamental processes governing the dynamics of co-
herent structures and their interplay with turbulence in
magnetized fluids present some of the most outstanding
problems in classical physics. In particular, various obser-
vations indicate that typical magnetic activities [e.g., solar
magnetic cycles, solar flares, corona mass ejection (e.g.,
[1–3]) in astrophysical plasmas, saw-teeth, and major dis-
ruptions [4] in laboratory plasmas] must involve the fast
transport of magnetic fields on time scales much shorter
than the Ohmic diffusion time scale, which has challenged
many previous authors. This is especially the case in single
fluid magnetohydrodynamic (MHD) turbulence, where tur-
bulent transport of magnetic fields is seriously quenched
due to the backreaction of (small-scale) magnetic fields
[2,5–7] even for a weak large-scale magnetic field far
below equipartition.

Significant quenching in turbulent transport can also
result from shearing by (stable) shear flows, which accel-
erate the forward cascade to small scales by eddy distortion
or disruption, effectively enhancing the overall dissipation
in a system [7–10]. While this shear quenching is vital for
plasma confinement in laboratory plasmas (e.g., tokamaks,
stellerators, etc. [10,11]), it adds more trouble to explain-
ing the aforementioned fast magnetic activities. Thus the
eminent question is whether or not the transport of mag-
netic fields is super slow under the influence of both
magnetic back reaction and shear. In two-dimensional
(2D) MHD, the turbulent dissipation rate �T of magnetic
fields in parallel with shear flows was indeed shown to be
slowed down due to both effects [7]. The dependence of�T

on molecular Ohmic diffusivity � is, however, shown to be

weaker / �2=3 compared to � in the absence of shear flow.
In two-fluid MHD, the dependence on � becomes even

weaker (�1=3) [12], suggesting a good possibility of fast
magnetic dissipation (i.e., �T / �0) due to the decoupling
of electrons from ions on fine scales.

In this Letter, we report on the first comprehensive direct
numerical simulations of 2D (single fluid) sheared MHD
turbulence to elucidate fundamental physical processes
which accelerate or moderate transport. This is achieved
by an extensive exploration of the parameter space, which

previous analytical works [7,13] have been unable to in-
vestigate. We show that shear flows play an interesting dual
role: quenching transport by shear distortion while simul-
taneously enhancing it via resonance [13,14]. In particular,
a strong large-scale magnetic field B0 transforms turbu-
lence eddies into packets of Alfvén waves of frequency
!B ¼ B0 � k, with which the shear flow U0 can resonantly
interact when Doppler shifted frequency !D ¼ !� U0 �
k ¼ �!B. This leads to an enhancement of the turbulent
diffusivity of B0, which would otherwise be severely
quenched. Note that for effective transport, irreversibility
through this resonance (and its overlap), stochasticity,
and/or molecular dissipation is absolutely necessary. The
results can have significant implications for understanding
the role of waves and structures in turbulent transport in a
variety systems (e.g., see [15]).
We consider incompressible MHD equations for the

vorticity (! ¼ r� u) and magnetic vector potential A
(B ¼ r� Aẑ) given in the dimensionless form:

½@t þ ðU0 þ uÞ � r�! ¼ �r2!þ 1

M2
ðB � rÞr2Aþ F;

½@t þ ðU0 þ uÞ � r�A ¼ �r2A: (1)

Here, F is an external forcing;U0 is an imposed shear flow;
u is the turbulent flow evolved consistently under the
influence of U0 and the vorticity driving F; M ¼ vc=vA

is the Alfvénic Mach number—the ratio of characteristic
turbulent velocity vc to the Alfvén speed vA associated
with a large-scale magnetic field; � and � are molecular
Ohmic diffusivity and viscosity which are assumed to be
the same (i.e., magnetic Prandtl number Pm ¼ �=� ¼ 1).
The forcing is chosen to have a power spectrum peaked
around jkj � 5, and temporally random with no character-
istic frequency (!0 ¼ 0) and correlation time �C=2� ¼
1=�, thereby containing frequencies ! ¼ !0 � 2�=�C ¼
½��; ��. Here, � is the decorrelation rate. As done in [5],
we apply hyperviscosity on scales larger than that of the
forcing to keep the characteristic wave number of turbu-
lence k� 5 even in the kinematic limit (without inverse
cascade or the formation of zonal flows).
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We solve Eq. (1) by using spectral code with the
4th order accuracy (IFRK4) in a ð2�Þ2 box with periodic
boundary conditions. The shear flow and initial large-
scale magnetic field are chosen such that U0 ¼ �sinðxÞŷ
and hAðt ¼ 0Þi ¼ A0ðt ¼ 0Þ ¼ cosx [B0 ¼ r� A0ẑ ¼
sinðxÞŷ], thus allowing no direct influence of shear on
B0, i.e., U0 � rB0 ¼ 0. Here, h i denotes an average over
small-scale turbulence; � represents (maximum) shearing
rate and velocity in our units. It is important to note that if
U0 � rB0 � 0, B0 would be sheared and stretched directly
by U0, thereby efficiently dissipated. We numerically de-
termine �T ¼ huxAi=B0 from the decay rate of A0, which
is solely attributed to molecular (�) and turbulent diffusion
for U0 � rB0 ¼ 0. In the following, we present the results
from three series of numerical simulations obtained by
systematically varying M and �.

(i) Unsheared MHD.—We first perform simulations for
the unsheared MHD turbulence (U0 ¼ 0) by using �c ¼ 1
(�=2� ¼ ��1

c ¼ 1). At the beginning of the simulation, we
see a slow decay of large-scale magnetic field A0 due to the
backreaction of small-scale magnetic fields (see also [5]).
This slow mixing of A0 is visually shown in Fig. 1(b), in
comparison with Fig. 1(a) obtained without backreaction
(M ! 1). When A0 becomes sufficiently weak with neg-
ligible backreactions, A0 decays passively at a faster,
kinematic turbulent diffusivity [see Fig. 1(a)] �K ¼
�TðB ¼ 0Þ. The critical strength of magnetic fields for
the suppression of �T is found to be M2 ¼ �K=�, in
good agreement with [5]. Figure 2 shows the effective

magnetic Reynolds number Rm ¼ �T=� as a function of
1=M2 / B2

0 for � ¼ 0:0005. Interestingly, two distinct re-

gimes of different scalings with B0 are identified. The first
for 1<M2 <�K=�, �T / B�2:06

0 , in agreement with [5].

However, for a very strong magnetic field M< 1, �T

decreases more rapidly with B0, with the new scaling �T /
B�4:04
0 . The physical reason for these different scalings is

resonance which occurs when ! ¼ �!B ¼ �k sinx=M.
Specifically, in the case when M> k=2�ð�0:8Þ, there al-
ways exists! in the forcing frequency spectrum (!=2� 2
½�1; 1�) which can resonate with some!B (i.e. for some x)
mode, including the highest frequency �k=M (near x ¼
�=2 and 3�=2) which has the strongest magnetic back-
reaction. However, forM< k=2�, high frequency (�k=M)
modes can no longer resonate, with the shrinking of the
resonant width. Note that stochasticity (� � 0) is crucial
for a broad resonant layer, much wider than that due to
classical dissipation.
To examine the effect of resonance in more detail, we

take the Fourier transform of Eq. (1) with U0 ¼ 0:

ði!þ �Þ ~A ¼ ~uxB0; ði!þ �Þ ~! ¼ i!Bk
2 ~Aþ ~F: (2)

The Fourier transform is denoted by �; !B ¼ k �B0 is
the Alfvén frequency; � involves both molecular dissipa-
tion (�k2 ¼ �k2) and nonlinear damping. The solutions to
Eq. (2) gives us �T ¼ huxAi=B0:

�T / i

B2
0

Z
d!ð!þ i�Þ 2!B

ð!þ!BÞ2 þ �2

� 2!B

ð!�!BÞ2 þ �2
jFð!Þj2: (3)

Here jFð!Þj2 is the frequency spectrum of the forcing.
Note that the quasilinear result (3) is good for � � 1
and/or weak turbulence (as in the case for strong shear
and/or magnetic fields). To highlight the main point, we
consider the following two extreme cases; (i) a short-
correlated random forcing jFð!Þj2 ¼ 1=� which contains
all frequencies, always satisfying the resonance condition.
(ii) a coherent wave forcing jFð!Þj2 ¼ �ð!�!	Þ with
!	 
 !B, with no possibility of resonance. It is straight-
forward to see that in these two cases, Eq. (3) gives �T /
1=B2

0� and �T / �=B4
0, respectively. That is, resonance

FIG. 1. Diffusion (mixing) of A0 for (a) M
2 ! 1ðB0 ¼ 0Þ and

� ¼ 0, (b)M2 ¼ 10 and� ¼ 0, (c)M2 ! 1 and� ¼ 1:0, and
(d) M2 ! 1 and � ¼ 10. All are taken at t ¼ 5 with �c ¼ 1.

FIG. 2. Rm ¼ �T=� vs 1=M2; lines represent the least square
fits with scalings of �t / B�2:06

0 for weak (M> 1) and �T /
B�4:04
0 strong magnetic field (M< 1) limits (� ¼ 0 and �c ¼ 1).
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enhances transport, leading to a weaker dependence on B0

as B�2
0 . Furthermore, for a wave forcing without reso-

nance, not only �T is significantly quenched, but also
vanishes without finite dissipation � as waves themselves
cannot do any transport without dissipation. In this case,
the turbulence is entirely made up of packets of Alfvén
waves traveling along the magnetic field lines. It is the lack
of resonant interplay between the magnetic field and turbu-
lence which causes the catastrophic collapse of transport.

(ii) Sheared kinematic MHD.—To elucidate the effect of
shear flows, we perform a set of experiments for sheared
MHD turbulence in the kinematic limit, for no magnetic
backreaction (M ! 1). As before the turbulence is gen-
erated by forcing the vorticity on k� 5wave numbers with
�c ¼ 1. We first visually demonstrate that shear flow does
quench magnetic transport in Fig. 1 by comparing the three
cases: no shear � ¼ 0 (panel [a]), weak shear � ¼ 1
(panel [c]), and strong shear � ¼ 10 (panel [d]). In par-
ticular panel [d] shows the formation of a transport barrier
(i.e. severe quenching in transport) perpendicular to the
shear flow. The reduction in transport by shear flow is
quantified in Fig. 3 where Rm ¼ �T=� (� ¼ 0:005) is
plotted as a function of � for �� ½0:001; 10�. Note that
Rm is related to the Lundquist number through L ¼
B0Rm=�. Of importance to notice is that the two different
scalings with� are apparent, with the transition occurring
when � is roughly comparable with turbulence decorre-
lation rate, i.e., �c ¼ 1 � ��1. That is, for weak shear
�< 1, �T does not change much with� (�T / �0) while
for strong shear �> 1, �T rapidly decreases /��2:7.
Interestingly, the reason for this is twofold. First, note
that for U0 ¼ �sinx, the resonance occurs locally when
!��k sinx ¼ 0, where k (�5) is again the characteristic
turbulence wave number. Thus, for �< k=2�, there al-
ways exists !=2�� ½�1; 1� which satisfies the resonance
condition (including the maximum U0), thereby enhancing
transport. This is similar to M> k=2� case in (i) un-
sheared MHD, discussed earlier. Secondly, turbulence
with �c <��1 changes its eddies too quickly to be subject
to a coherent shearing effect. In comparison, for � � 1,
shearing becomes very efficient, significantly quenching
�T . That is, a shear flow leads to severe quenching when its
shearing rate is the shortest time scale in the system.

(iii) Sheared MHD.—The presence of magnetic fields
and shear flows can introduce important new dynamics
through the excitation of Alfvén waves which interact
with shear flows and turbulence. One of the interesting
consequences can be seen in Fig. 4 showing Rm ¼ �T=�
for � ¼ 0:001 for different values of � and M with �c ¼
1. When the magnetic field is sufficiently weak such that
M2 >�K=�, �T is unaffected by magnetic backreaction,
recovering the unsheared kinematic result. For 1<M2 <
�K=�, �T is suppressed due to magnetic back reaction,
similarly to the case without shear flow, discussed previ-
ously (see Fig. 2). However, for M2 < 1, a considerable
increase in �T is noticeable around the resonant point due
to the shear flow roughly when �� 1=M obtained by
taking !� 0 in resonant condition !��k sinx�
�k sinx=M. These resonant points are denoted by * in
Fig. 4, with a good agreement between the location of
these points and maximum transport, especially in the limit
of strong magnetic field where the turbulence is almost
Alfvénic. The resonance at this point is caused by the
turbulent eddies being transported by U0 along the mag-
netic field lines at the Alfvén speed, which allows the
Alfvén waves to be coherently forced, leading to the am-
plification of the amplitude of the Alfvén waves.
We obtain the scaling of the maximum value of �T at

resonant points as a function of B0, by choosing the value
of � satisfying the resonance condition. The results are
shown in Fig. 5. In sharp contrast to Fig. 2 obtained with
� ¼ 0, the scaling of �T / B�2

0 persists into the very

strong magnetic field regime M< 1. This is because the
shear flow shifts the frequency to match Alfvén frequency,
leading to the resonant interaction between Alfvén waves
associated with strong magnetic fields and turbulence,
thereby averting the violent reduction of transport �T /
B�4
0 . This is an interesting result, highlighting another

crucial effect of shear flow.
We demonstrate that these are robust results by perform-

ing similar simulations, but by using �c ! 0 instead of
�c ¼ 1. The results are plotted in Fig. 6. Immediately
noticeable is the significant reduction in overall value of
�T compared to the case with �c ¼ 1 (see Fig. 4). This

FIG. 3. Rm vs �, clearly showing the transition at ��1 ¼
�c ¼ 1 (B0 ¼ 0).

FIG. 4. Rm vs � for �c ¼ 1 and 1=M2 2 ½0; 0:01; . . . ; 10�,
with B0 increasing from the top to the bottom. The symbol *
approximately represents resonance point.
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follows from jFð!Þj2 / �=ð!2
0 þ �2Þ ! 1=� for � � 1

(�c 
 1). Furthermore, in the kinematic limit (M ! 1),
�T is quenched / ��1 for strong shear, with a much
weaker dependence on � compared to ��2:7 in the case
of �c ¼ 1. This is because for �c ! 0, the frequency of
forcing can take any value, always satisfying the resonance
condition !��k sinx ¼ �k sinx=M for all values of M
and x. Note that this scaling is weaker than the theoretical
prediction (�T / ��2) given in [7] obtained by using an
anisotropic forcing. The general tendency of weaker de-
pendency on shear for the forcing with shorter correlation
time is however generic, and is also found in previous
works (see [7,13]). The increase of �T at resonant points,
marked by *, is also clearly seen in Fig. 6, which again
shows the persistence of the scaling of �T / B�2

0 into

M2 < 1 due to resonances.
In summary, we have elucidated the key physical pro-

cesses for transport, especially highlighting the indispens-
able role of coherent structures (magnetic fields and shear
flows) in determining turbulent transport through the exci-
tation of waves, shearing, and resonances [15]. In particu-
lar, we have demonstrated (i) that transport quenching by
shear flows and resonant interactions is vitally important to
understanding turbulence regulation in 2DMHD; (ii) that a
shear flow plays a dual role of quenching transport by
shearing, while enhancing it via resonance and the overlap
of resonant layers; (iii) that a strong suppression of trans-
port by shear flow (magnetic fields) occurs when the
shearing (Alfvénic) time scale is shortest among all the
characteristic time scales in the system (with no resonance
between coherent structures, turbulence, and waves).
Without resonance, �T / B�4

0 for weak shear and strong

B0, �T / ��2:7 for strong shear and weak B0; while with
resonance �T / B�2

0 / ��2 for both strong shear and B0.

These results were checked to be robust upon the change in
the values of � and � (across � ¼ � ¼ 0:5; 1; 2; 4; 8�
10�3). We expect that similar results will hold for more
general shear flows and equilibriummagnetic fields as long
as they are stable.

Our results can have potentially significant implications
for a variety of plasmas. Particularly, we expect similar
physical processes for reducing or enhancing momentum

transport and the alpha effect (in 3D MHD) [16], with a
shear flow playing a similar dual role. This will have a
crucial consequence in understanding the formation of
self-generated zonal flows and dynamos, e.g., in astrophys-
ical, space, and laboratory plasmas (the Sun, galaxies,
tokamaks, RFP, etc.). Note that the formation of zonal
flows does not take place in 2D MHD, and thus was not
discussed in this Letter. Similar dual roles of shear flow
will also be critical in understanding transport in other
systems supporting waves (e.g., inertial waves in rotating
fluids and gravity waves in stratified fluids). In MHD
turbulence the shear quenching can, however, be weakened
by the interference of magnetic field shear as shown in
reduced 3D MHD [17]. These issues will be addressed in
future papers.
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FIG. 6. The same as in Fig. 4 but with �c ! 0.

FIG. 5. Rm vs 1=M2 for �c ¼ 1 at resonant points for (!�
�k�!B). The line represents the least squares fit with the
scaling �T / B�1:96

0 .
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