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Droplet deposition onto a hydrophobic surface is studied experimentally and numerically. Awide range

of droplet sizes can result from the same syringe, depending strongly on the needle retraction speed. Three

regimes are identified according to the motion of the contact line. In region I, at slow retraction speeds, the

contact line expands and large droplets can be achieved. In region II, at moderate needle speeds, a

quasicylindrical liquid bridge forms resulting in drops approximately the size of the needle. Finally, at

high speeds (region III), the contact line retracts and droplets much smaller than the syringe diameter are

observed. Scaling arguments are presented identifying the dominant mechanisms in each regime. Results

from nonlinear numerical simulations agree well with the experiments, although the accuracy of the

predictions is limited by inadequate models for the behavior of the dynamic contact angle.
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Contact dispensing methods of fluids are widely used in
a variety of applications including direct scanning probe
lithography [1], micromachined fountain-pen techniques
[2,3], electrowetting-assisted drop deposition [4], and bio-
fluid dispensing applications [5,6]. The process is, at first
glance, straightforward and is initiated by the formation of
a liquid bridge between the substrate and a dispensing
syringe. As the syringe retreats, the liquid bridge stretches,
grows, and breaks, leaving a drop on the substrate. A
seemingly simple question can be asked—how does the
drop size depend on the syringe geometry, speed, and the
fluid properties? A comprehensive answer must consider
the stability of the liquid bridge and the physics of the
moving contact line at the liquid-air-solid interface—both
difficult problems. Theoretical studies of liquid bridge
stability date back to Rayleigh [7], and have been extended
to include gravity and noncylindrical geometries [8,9]. In
addition, the nonlinear dynamics have been solved numeri-
cally, using both 2D (axisymmetric) [10] and 1D
(slender jet) [11,12]. Previous work has concentrated on
geometries in which the contact line is pinned at both ends
of the liquid bridge [12,13], and there are only a few results
that couple the liquid bridge with a moving contact line
[14,15]. A possible reason for this is the difficulty in
solving the flow near the contact line where the continuum
equations are invalid [16,17] and a microscopic description
must be imposed (e.g., [18]). In this Letter, we focus on the
physics of drop dispensing on a flat, smooth, hydrophobic
substrate in which the contact line is free to move and is
inherently coupled with the liquid bridge stability.
Experiments and numerical simulations are used to iden-
tify a range of complex flow phenomena which enable the
deposited drop size to vary by 2 orders of magnitude as the
syringe retraction speed is changed.

In our experiment, a stainless steel syringe (typical
radius, R ¼ 200 �m) is mounted vertically on a
computer-controlled stage. The syringe is connected by a
small tube to a 10 cc barrel mounted on the same stage.

This configuration maintains a constant hydrostatic headH
at the syringe tip (H � 4 cm). The fluid (a 85-15 mixture
by volume of glycerol and water) has viscosity � ¼ 84 cP
and surface tension � ¼ 0:063 N=m. The fluid exhibits a
static contact angle of �90� with the substrate, a smooth
glass slide coated with a monolayer of octadecyltrichlor-
osilane. The syringe is brought down towards the substrate,
stopping �40 �m above the surface so that the meniscus
touches the substrate and spreads, partially wetting the
surface to form a stable drum-shaped liquid bridge
(Fig. 1). As the syringe retracts at a constant speed U,
the liquid bridge elongates and evolves due to the changing
height h, fluid flowing into the bridge through the syringe
(characterized by an inflow velocity uf) and the motion of

the contact line between the bridge and the substrate
(characterized by a contact line position r and speed uc).
At a critical height hp, the liquid bridge becomes unstable

and pinches off rapidly, leaving a drop on the surface. A
high-speed camera (Photron APX) equipped with a
5X Mitutuyo lens was used to capture the motion of drop
dispensing at frames rates up to 10 kfps, with a resolution
of 3:33 �m=pixel. The experiment was carried out using
several syringe diameters, hydrostatic pressures, and re-
traction speeds, and conducted multiple times to ensure
repeatability.
Given the simplicity of the experiment, the resulting

drop size rd shows a surprisingly complex dependence
on the syringe speed (Fig. 1). The data can be divided
into three regions, categorized according to the motion of
the contact line. At low retraction speeds [Fig. 1, region I],
the flow from the syringe into the liquid column is rela-
tively high, and a bulging liquid bridge forms. The contact
angle on the surface exceeds its equilibrium value, and the
contact line expands outwards. In this regime, arbitrarily
large drops can be formed, with the drop radius scaling

with U�1=2. As one increases the syringe speed [Fig. 1,
region II], the bridge elongation balances the incoming
flow and the contact line becomes stationary. In this re-
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gime, a quasicylindrical liquid bridge forms, finally pinch-
ing off as it becomes unstable. The resultant drop size still

scales with U�1=2. However, there is a jump in the drop
size between the fixed and expanding contact line regimes
due to a jump in the pinchoff height hp (Fig. 2). A third

regime is achieved by increasing the syringe speed further
[Fig. 1, region III]. The liquid bridge initially adopts a
catenoidal shape, but as its contact angle falls below the
equilibrium value, the contact line retreats inward until, at
some critical point, the liquid bridge become unstable and
pinches off. The rapid pinching motion drags the contact
line inwards at a very high speed (�100 times the syringe
speed), and due to this rapid retreating motion, a small drop
is deposited, with a diameter that continues to decrease
until a minimum drop size is reached, independent of
retraction speed, with a diameter approximately one tenth
that of the dispensing syringe.

We focus first on region II where the contact line is
stationary, and the bridge is near cylindrical. In this region
the syringe speed is much smaller than the capillary wave

speed, U=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�=�R

p ¼ Oð10�4Þ, viscous and inertial forces
are small, and the liquid bridge can be considered as

quasistatic. Since the Bond number, Bo � g�R2=�, is
small [Oð10�2Þ], the hydrostatic pressure in the column
is approximately constant, dominated by the Laplace pres-
sure set by the needle curvature �=R. This state is ame-
nable to the classical Rayleigh stability analysis, which
predicts that the height-to-radius, � ¼ hp=R, must be less

than 2� to maintain stability [7]. Furthermore, for a mar-
ginally stable liquid bridge (i.e., �=2� ¼ 1þ �), the di-
mensionless volume, V � vp=�R

2hp, is given by

V ¼ 1þ 2�þ 5�2=2þOð�3Þ [8]. Rearranging this equa-
tion gives V ¼ ð�=2�Þ2 þOð�2Þ, from which we find that
vp � h3p. Assuming that the liquid flow from the syringe

into the liquid bridge uf is constant (driven by the net

pressure difference, �gH � �=R), both the volume and
the height increase linearly with time: v� uft; h�Ut,

from which it is easily derived that the pinchoff height at

which the bridge becomes unstable, hp, scales like U
�1=2,

that the breaking time tp scales like U�3=2, and that the

drop radius rd scales like U�1=2. The experiments support
this scaling argument very well [Figs. 1(b), 2, and 3].
In region I, where the contact line expands, the bridge is

no longer cylindrical and the Rayleigh stability criteria can
be modified by a small parameter, � ¼ ð1� w2Þ=ð1þ w2Þ,
where w ¼ rðhÞ=rð0Þ is ratio of the upper and lower con-
tact line radii [9]. In agreement with the theory, we do see a
decrease in the pinchoff height �, just as the contact line
begins to expand (w< 1), although � quickly becomes too
large for the perturbation analysis to remain valid. To
address this, we employ a numerical model, previously
used in studying jet breakup and the stretching of a pinned
liquid bridge [11,12] with modified boundary conditions to
include moving contact lines. The nondimensionalized
equations for conservation of mass and momentum are
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FIG. 2 (color online). Pinchoff height hp in regions of expand-
ing (I) and fixed (II) contact line. Numerical simulations (h) and
experimental measurements (v) are shown. For this case, R ¼
205 �m, Oh ¼ 0:087, Bo ¼ 0:0079. The insets show measured
and computed shapes of the liquid bridge prior to pinchoff
[numerical solution: cyan (or light gray) line].
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FIG. 1 (color online). (a) Typical sequence of images of drop
dispensing at syringe speeds of (I) 15 �m=s, (II) 35 �m=s, and
(III) 400 �m=s. The syringe radius is 205 �m. (b) Dis-
pensed drop radius, rd vs syringe speed, U, illustrating the three
regions: expanding contact line (I), pinned contact line (II), and
retreating contact line (III).
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given by

@trþ ur0 ¼ �ru0=2; (1)

ð@tuþ uu0Þ ¼ ��0 þ 3Oh

r2
½ðr2u0Þ0� � Bo; (2)

while the evolution of the mean curvature � (included to
accurately predict the breakup beyond the validity of
slender-jet approximation [11,19]) is described by

� ¼ 1

rð1þ r02Þ1=2 �
r00

ð1þ r02Þ3=2 : (3)

Here, uðz; tÞ and rðz; tÞ are the axial flow speed and column

radius, normalized by the capillary wave speed ucp ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi
�=�R

p
and the syringe radius R, respectively. Time t is

normalized by the capillary time
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�R3=�

p
. A prime de-

notes the partial derivative with respect to the axial co-
ordinate z. For our experiments, Ohnesorge number
Oh � �=

ffiffiffiffiffiffiffiffiffiffi
�R�

p � Oð1Þ. Note that the Weber number,

We ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
U=ucp

q
, should be small for the equations to remain

valid [19].
The boundary conditions require that at the top of the

liquid bridge, h ¼ Ut, and that the contact line is pinned,
rðhÞ ¼ R. The pressure here is the hydrostatic head minus
the pressure drop due to the flow: pðhÞ ¼ �gH �
8�ufL=R

2 (L is the length of the syringe), where the

inflow velocity uf is evaluated as uf ¼ uðhÞ. At the sub-

strate, z ¼ 0, a solid-wall boundary condition is imposed,
uð0Þ ¼ 0. This last boundary condition is quite subtle,
since the contact line may move with time, and this must
be consistent with the solution of the model equations. For
a fixed contact line, rð0Þ is a constant and the apparent
contact angle varies between (�a, �r)—the advancing and
receding equilibrium contact angles. For a moving contact
line, the contact angle deviates from the equilibrium con-
tact angle in order to balance the viscous drag. In general
this is a function of the contact line speed, uc ¼ @tr.
Predicting the contact line behavior and the dynamic con-
tact angle is an area of active research (e.g., [18]). For
simplicity, we use constant values for (�a, �r) of 100

� and
80�, respectively. Equations (1)–(3) were solved numeri-
cally [11]. Figure 2 indicates excellent agreement achieved
between the numerical solutions and the experimental
measurements of the pinchoff height, bridge shape, and
dependence on the syringe speed.

The speed at which liquid flows into the bridge uf is a

critical scaling velocity, affecting the pressure boundary
condition at the top of the bridge and the rate at which the
bridge volume grows (which in turn plays a central role in
the bridge stability and subsequent pinchoff). We can
estimate uf assuming Poiseuille flow through a syringe

of length L, radius R, and driven by the net pressure
difference, �p ¼ �gH � �=R. This estimate differs by
only a few percent from the value predicted by the 1D
equations. The appropriateness of this scaling is confirmed
in Fig. 3 which shows the resultant drop size rd=R, versus

the scaled retraction speed U=uf, for a series of experi-

ments obtained using three syringe sizes and three hydro-
static pressures (yielding values of uf that ranged from

46–414 �m=s).
The physics of the drop deposition changes abruptly in

region III where the contact line begins to retreat. High-
speed imaging was used to measure the contact line posi-
tion rð0; tÞ from which its speed uc was calculated
[Fig. 4(a)]. Initially, the contact line is at its maximum
[rð0Þ=R � 1], and has zero speed. As the syringe begins to
retreat, there is a short period of acceleration, after which
time the contact line moves inward with approximately
constant speed. However, at a critical radius, approxi-
mately rð0Þ=R� 0:5, we see a dramatic acceleration with
uc=U reaching Oð100Þ immediately prior to pinchoff. In
the constant speed region, uc=ucp � 1, inertial and viscous

forces are negligible and the contact line speed is thus
determined solely from the mass balance and pressure
equilibrium in the bridge. Applying this balance, and the
fact that our estimate for uf does not depend onU, it is easy

to show geometrically that uc=U� 1� uf=U, a trend

confirmed in both the experiments and simulations (Fig. 4).
The high-speed contact line phase is driven by the pinch-

off instability, during which time a strong capillary force
pulls the contact line inward at increasing speed. As uc=ucp
approaches unity, the viscous forces become significant,
and the contact line acceleration decreases immediately
prior to pinchoff. We also see that the radial location at
which the pinchoff instability initiates moves inward as U
increases, and that this affects the final drop size [Fig. 4(a),
inset]. A detailed stability analysis of the asymmetric
liquid bridge with a moving contact line explains that the
smaller bridge volume corresponding to the higher syringe
speed postpones the pinchoff instability, resulting in a
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FIG. 3 (color online). Normalized drop sizes rd=R at different
scaled syringe speeds U=uf for three syringe radii: 205 �m (v),

255 �m (�), and 320 �m (h). The driving pressure �p ¼
�gH � ð�=RÞ is 172 (Pa). Also shown are drop sizes obtained
using an R ¼ 205 �m syringe and two effective driving pres-
sures: �p ¼ 52:0 Pa (e) and 291 Pa (x). The syringe speed is
scaled by the flow speed, uf ¼ ðR2=8�LÞð�gH � �=RÞ.
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smaller drop [20]. However, as the syringe speed increases
further, the location at which the contact line begins its
rapid acceleration moves back out, and the drop size
increases [Fig. 4(a), inset]. A possible reason for this
may be that the dynamic contact angle decreases, which
destabilizes the liquid bridge earlier [20]. The numerical
model yields good comparisons with the experimental
results [Fig. 4(b)], capturing the general behavior in the
constant speed region (including the increase in uc=U with
U) as well as the onset of rapid acceleration prior to
pinchoff. However, the model predicts the critical radius
to be larger than that seen in the experiment. We believe
that the reason for this discrepancy is that the numerical
simulation uses a static retreating contact angle, � ¼ 80�,
while the contact angle observed in the experiment varies,
from a value larger than 85� prior to the critical point,
to a value as low as 60� during the acceleration phase.
Furthermore, these angles appear to depend on the syringe
speedU, and have a strong effect on the resultant dynamics
[20]. A second reason for the degraded agreement between
experiment and simulation may be due to high radial
velocities observed which violate the assumptions in the

one-dimensional numerical approach considered here,
although despite this, the numerical predictions are sur-
prisingly faithful.
In summary, the retraction speed of the syringe can exert

a huge influence on the size of the resulting droplet that
remains on the substrate, with the transition between the
three regimes identified being determined by the balance
between the flow into the liquid bridge and the onset of the
pinchoff instability. At the highest retraction speeds, the
small droplet size appears to be determined by the contact
line speed, raising the possibility that even smaller droplets
might be achieved on surfaces that are smoother and/or
exhibit higher contact angles. The numerical model pro-
vides surprisingly accurate predictions of the dynamics,
even in the regimes where the contact line motion and the
presence of viscous and inertial forces make the one-
dimensional assumptions questionable.
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FIG. 4 (color online). (a) Contact line speed uc=U vs contact
line location rð0; tÞ=R for various scaled syringe speeds:U=uf ¼
0:66 (4), 0.99 (e), 1.31 (x), 2.63 (w), 3.94 (5), and 5.25 (�).
The inset shows the corresponding final drop size.
(b) Corresponding numerical solution.
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