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We present an ab initio calculation of the longitudinal electron scattering response function off 4He

with two- and three-nucleon forces and compare to experimental data. The full four-body continuum

dynamics is considered via the Lorentz integral transform method. The importance of the final-state

interaction is shown at various energies and momentum transfers q. The three-nucleon force reduces the

quasielastic peak by 10% for q between 300 and 500 MeV=c. Its effect increases significantly at lower q,

up to about 40% at q ¼ 100 MeV=c. At very low q, however, data are missing.
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Inelastic electron scattering off nuclei provides impor-
tant information on nuclear dynamics. Varying the momen-
tum q, transferred by the electron to the nucleus, one can
focus on different dynamical regimes. At lower q, the
collective behavior of nucleons is studied. As q increases,
one probes properties of the single nucleon in the nuclear
medium and its correlations to other nucleons from long to
short range. Thus the inclusive longitudinal RL and trans-
verse RT response functions are of particular importance.
Different from RT , in a nonrelativistic framework RL does
not require the knowledge of implicit degrees of freedom
(exchange currents), providing a clean leptonic probe of
the nuclear Hamiltonian. In addition, the theoretical study
of inclusive processes is important to help planning further
investigations, for selected kinematics, via exclusive scat-
tering experiments.

In the 1980s and 1990s, an intense experimental activity
was devoted to inclusive electron scattering (e, e0), in the
so-called quasielastic (q.e.) regime, corresponding to q
values of several hundred MeV=c and energy transfers !
around the q.e. peak (! ’ q2=2m). Here one can envisage
that the electron has scattered elastically with a single
nucleon of mass m. Various nuclear targets have been
considered, from very light to heavy ones [1]. At these q,
one enters a very challenging regime, where nuclear and
subnuclear degrees of freedom intertwine. A very lively
debate has taken place about the interpretation of those
data. The two most discussed topics have been (i) short-
range correlations, i.e., the dynamical properties of nucle-
ons at short distances, and (ii) in medium modifications of
the nucleon form factor. To date the debate is still open.
More experiments are planned at Jefferson Laboratory
(E05.110 at Hall A) which will contribute to those issues,
and a theoretical effort is needed to help interpret old and
new experimental results.

The reason for concentrating on the q.e. regime has been
the conviction that for such a kinematics the plane wave

impulse approximation (PWIA) might be a reliable frame-
work to describe the reaction. The neglect of the final-state
interaction (FSI) has the advantage to allow a simple
interpretation of the cross section in terms of the dynamical
properties of the nucleons in the ground state. Thus it is
important to clarify the reliability of the PWIA (as well as
of further refinements). The Euclidean approach [2] has
already shown that the PWIA is rather poor; however, this
method does not easily allow one to obtain the ! depen-
dence of the FSI effects.
The aim of this Letter is twofold. On the one hand, we

study the role of FSI on RL of 4He at 300 MeV=c � q �
500 MeV=c, where by now only calculations with central
two-nucleon forces exist [3,4]. Here we use a realistic two-
body potential augmented by a three-nucleon force (3NF)
and compare the PWIA to results obtained via the Lorentz
integral transform (LIT) method [5,6]. The LIT method is
an ab initio approach, which allows the full treatment of
the four-body problem. It has already been applied to
various realistic calculations of electroweak reactions in
three- [7–11] and four-body systems [12,13]. Different
from the Euclidean approach, the LIT method allows a
comparison with the PWIA regarding the! dependence of
RL. Our second focus lies on the study of the role of 3NFs.
We contribute to this much-debated issue investigating
3NF effects on initial and final states by studying RL in
various kinematical regions.
The choice of 4He as a target is of particular interest. In

fact, 4He has quite a large average density. Moreover, its
binding energy per particle is similar to that of heavier
systems. Therefore, 4He results can serve better as guide-
lines for investigating heavier nuclei than results for two-
and three-body systems. Various inclusive 4He (e, e0) ex-
periments have been performed in the past (see [14] for a
summary of the world data), and a comparison theory
experiment is possible without the ambiguities, created
by the Coulomb distortions, which affect heavier systems.
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The longitudinal response function is given by

RLð!; qÞ ¼
ZX

f
jh�fj�̂ðqÞj�0ij2�

�
Ef þ q2

2M
� E0 �!

�
;

where M is the target mass and j�0=fi and E0=f denote

initial- and final-state wave functions and energies, respec-
tively. The charge density operator �̂ is defined as

�̂ðqÞ ¼ e

2

X
i

ð1þ �3i Þ exp½iq � ri�; (1)

where e is the proton charge and �3i the isospin third
component of nucleon i. The � function ensures energy
conservation. RL contains a sum over all possible final
states, which are excited by the electromagnetic probe,
including also continuum states. Thus, in a straightforward
evaluation one would need to calculate both bound and
continuum states. The latter constitute the major obstacle
for many-body systems if one wants to treat the nuclear
interaction rigorously. In the LIT method [5,6], this diffi-
culty is circumvented by considering instead of RLð!; qÞ
an integral transform LLð�; qÞ with a Lorentzian kernel
defined for a complex parameter � ¼ �R þ i�I by

L Lð�; qÞ ¼
Z

d!
RLð!; qÞ

ð!� �RÞ2 þ �2
I

¼ h ~��
�;qj ~��

�;qi: (2)

The parameter �I determines the resolution of LL and is
kept at a constant finite value (�I � 0). The basic idea of
consideringLL lies in the fact that it can be evaluated from

the norm of a function ~��
�;q, which is the unique solution

of the inhomogeneous equation

ðĤ � E0 � �Þj ~��
�;qi ¼ �̂ðqÞj�0i: (3)

Here H denotes the nuclear Hamiltonian. Because of the
presence of the imaginary part �I in (3) and the fact that its
right-hand side is localized, one has a bound-state-like
asymptotic boundary condition. Thus, one can apply
bound-state techniques for its solution. Finally, RLð!; q ¼
constÞ is obtained by inverting the LIT (2). Subsequently,
the isoscalar and isovector parts of RL are multiplied by the
proper nucleon form factors. For the LIT inversion, various
methods have been devised [15,16].

The PWIA result is obtained under the hypothesis of one
outgoing free proton with mass m and a spectator (A� 1)
system with mass Ms:

RPWIA
L ð!; qÞ ¼

Z
dpnðpÞ�

�
!� ðpþ qÞ2

2m
� p2

2Ms

� �

�
:

Here nðpÞ represents the proton momentum distribution
and � the proton separation energy. In the following, we
present results obtained with the Argonne V18 (AV18) [17]
and the Urbana IX (UIX) [18] two- and three-body forces.
As nucleon form factors, we use the proton dipole fit and
the neutron electric form factor from Ref. [19]. The solu-
tion of (3), as well as the ground state j�0i, is expanded in
hyperspherical harmonics (HH). The HH expansion is

truncated beyond a maximum value Kmax of the HH
grand-angular momentum quantum number. The conver-
gence of the HH expansion is improved by introducing a
Kmax-dependent effective interaction (EIHH method)
[20,21]. In order to evaluate LL, we have calculated the

norm h ~��
�;qj ~��

�;qi directly, using the Lanczos algorithm

[22]. The operator �̂ is expanded in Coulomb multipoles of
order J. The LIT is calculated for each isoscalar (T ¼ 0)
and isovector (T ¼ 1) multipole separately up to a maxi-
mal value of Jmax where convergence of the expansion is
reached. The values of Jmax vary from 2 to 7 for q ranging
from 50 to 500 MeV=c.
The accuracy of the results is determined mainly by the

convergence of the HH expansion and the stability of the
inversion. In the calculations we used a ground state hyper-
spherical momentum value K0

max ¼ 16 (14) for the
AV18þ UIX (AV18) case, leading to a binding energy
of 28.4 (24.3) MeV. Since a multipole-dependent conver-
gence pattern has been encountered and each multipole
contributes differently to the total strength, the Kmax used
for the LIT evaluation vary according to the value of J,
namely, KJT

max ¼ 12–16 for even J and KJT
max ¼ 13–17 for

odd J have been considered. Our LIT results converge at a
percentage level. In Fig. 1, the accuracy of the results for
RL regarding both the HH expansion and the inversion
stability aspects is illustrated exemplarily for the isoscalar
and isovector parts at q ¼ 500 MeV=c. The figures con-
tain three curves: The full line is obtained when the single
multipole contributions LJT

L , calculated up to KJT
max, are

first inverted and then summed up. The dashed line repre-
sents the results where the various multipole contributions
LJT

L are calculated only up to KJT
max � 2. The comparison

between these two results illustrates the quality of the HH
convergence. The dotted line reflects the inversion of the
total LLð�; qÞ, where the various multipole contributions
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FIG. 1 (color online). Isovector (a) and isoscalar (b) parts of
RLð!; qÞ at q ¼ 500 MeV=c. Single multipole contributions
with KJT

max (solid line) and with KJT
max � 2 (dashed line) first

inverted and then summed up; single multipole contributions
with KJT

max first summed up and then inverted (dotted line).
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LJT
L , calculated up to KJT

max, are first summed up and then
inverted. The comparison between the dotted and full lines
shows the accuracy of the inversion. In Fig. 1, one finds
very satisfying results for both isospin channels for the
HH convergence and the accuracy of the inversion as well.
We should mention that we do not show the low-energy
isoscalar response, where a narrow 0þ resonance with a
width of a few hundred keV is present at Er very close to
threshold [23]. To get accurate results for such a resonance,
a convergent LIT calculation with a �I much smaller than
the presently used values (smallest value �I ¼ 5 MeV)
should be carried out, which then leads to a very slow

asymptotically falloff of the solution j ~��
�;qi (see [24]).

Such a calculation requires a considerable additional com-
putational effort, and thus the threshold region is excluded
from our present work. Allowing a narrow resonance in the
inversion [24], we have checked that our results are stable
for energies above Er þ 2�I.

In Fig. 2, the results of RLð!; qÞ at various q are shown
and compared to data. In all cases one finds that the FSI
effects are very large and essential for reaching agreement
with experiment. The PWIA fails particularly in the q.e.
peak and at low!. With growing q, FSI effects decrease in

the peak region but not at low !. One may also consider a
more refined PWIA, where a spectral function is used
instead of a momentum distribution (see, e.g., [28]). In
Ref. [28], it was shown that such an improved PWIA
modifies the simple PWIA result by only 10%–20%.
In Fig. 2, one also sees the 3NF effects on the full

calculation. For q ¼ 300 MeV=c, one notes a good agree-
ment of the data with the AV18þ UIX result. This is true
for q ¼ 400 MeV=c as well, if one does not consider the
data of Ref. [26], which exhibit larger error bars. At q ¼
500 MeV=c, some discrepancies between theory and ex-
periment are present in the low- and high-energy range,
while there is a fairly good agreement in the peak region.
However, investigations on the three-body systems [10]
have shown that a consideration of relativistic effects
becomes important at such a momentum transfer.
Table I illustrates the 3NF effect on peak position and

peak height also for lower q. One notes that there is no
unique 3NF effect on the position, while one has a reduc-
tion of the height due to the 3NF at any q. The size of the
reduction amounts to 10% for the higher q, whereas below
q ¼ 300 MeV=c the reduction grows with decreasing q,
reaching almost 30% at q � 100 MeV=c. In Fig. 3, the
results at lower q are shown. The important role of the 3NF
is evident in the whole peak region, leading to a strong
decrease of RL of up to 40% for some ! values. Recently,
also some new data at q ’ 200 MeV=c have been pub-
lished [29] [see Fig. 3(a)]. While one finds a satisfactory
agreement between the AV18þ UIX result and data be-
yond the peak, one observes a non-negligible discrepancy
in the peak itself. In Figs. 3(a) and 3(b), we also illustrate
RL for a calculation [4] with a central two-nucleon poten-
tial [the Malfliet Tjon (MTI-III) model [30]]. Results are
more similar to the AV18 than to the AV18þ UIX curves,
showing that the 3NF effect is not simply explained by the
binding energy difference (4He binding energy with AV18,
AV18þ UIX, and MTI-III is 24.3, 28.4, and 30.6 MeV,
respectively).
We summarize our results as follows. We have carried

out an ab initio calculation of the longitudinal (e, e0)
response function RLð!; qÞ of 4He for various kinematics
up to q ¼ 500 MeV=c. The full dynamics of the four-body
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FIG. 2 (color online). RLð!; qÞ at various q: PWIA using nðpÞ
of AV18þ UIX [25] (dotted line); full calculation with AV18
(dashed line) and AV18þ UIX (solid line). Data from Bates
[26] (squares), Saclay [27] (circles), and world-data set from
Ref. [14] (triangles).

TABLE I. RL peak position !p and RL peak height without
3NF (AV18), with 3NF (AV18þ UIX), and relative 3NF effect
�R ¼ 100� ½RLðAV18Þ � RLðAV18þ UIXÞ�=RLðAV18Þ.

AV18 AV18þ UIX AV18 AV18þ UIX

q !p !p RLð!p; qÞ RLð!p; qÞ �R

[MeV=c] [MeV] [MeV] [10�3 MeV�1] [10�3 MeV�1] [%]

50 26 28 2.96 2.15 �27

100 28 30 9.56 7.11 �26

200 36 38 17.5 14.5 �17

300 54 52 13.4 12.0 �10

350 73 70 10.3 9.20 �11

400 95 95 8.04 7.18 �11

500 143 146 4.84 4.36 �10
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system has been taken into account for the 4He ground
state and the four-body continuum states as well. The
rigorous inclusion of FSI has been achieved by use of the
LIT method. Our work has been mainly focused on two
points, namely, the study of the importance of FSI and of
3NF. We have shown that both ingredients play an impor-
tant role and need to be considered in a calculation of RL. A
particularly important finding is the very large 3NF effects
of up to 40% in the RL peak region at q � 200 MeV=c.
Thus it is becoming apparent that there exists an electro-
magnetic observable, complementary to the purely had-
ronic ones, where one can learn more about the not yet well
established 3NF. In view of our findings, we hope for a
revival of the experimental interest in electron scattering,
especially on light nuclei and at lower energies and
momenta.
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FIG. 3 (color online). RLð!; qÞ at various q with the AV18
(dashed line), AV18þ UIX (solid line), and MTI-III (dashed-
dotted line) potential. Data in (a) from Ref. [29].
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