
QCD Corrections to eþe� ! J=c þ gg at B Factories

Yan-Qing Ma,1 Yu-Jie Zhang,1 and Kuang-Ta Chao1,2

1Department of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China
2Center for High Energy Physics, Peking University, Beijing 100871, China

(Received 2 January 2009; published 24 April 2009)

In heavy quarkonium production, the measured ratio Rc �c ¼ �½J=c þ c �cþ X�=�½J=c þ X� at B

factories is much larger than existing theoretical predictions. To clarify this discrepancy, in nonrelativistic

QCD we find the next-to-leading-order (NLO) QCD correction to eþe� ! J=c þ gg can enhance the

cross section by about 20%. Together with the calculated NLO result for eþe� ! J=c þ c �c, we show

that the NLO corrections can significantly improve the fit to the ratio Rc �c. The effects of leading logarithm

resummation near the end point on the J=c momentum distribution and total cross section are also con-

sidered. Comparison of the calculated cross section for eþe� ! J=c þ gg with the observed cross

section for eþe� ! J=c þ non-ðc �cÞ is expected to provide unique information on the issue of color-octet

contributions.
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In recent years, a number of challenging problems in
heavy quarkonium production have appeared [1]. Aside
from the J=c production cross sections and polarizations
in hadron collisions at the Tevatron, charmonium produc-
tion in eþe� annihilation at B factories [2,3] also con-
flicted with theoretical predictions. The observed double
charmonium production cross sections for eþe� !
J=c�cð�c0Þ were larger than the LO calculations in non-
relativistic QCD (NRQCD) [4] by an order of magnitude
[5], and later it was found that these discrepancies could be
largely resolved by the next-to-leading-order (NLO) QCD
corrections (see [6,7] for J=c�c and [8] for J=c�c0) with
relativistic corrections [9,10]. For the J=c production
associated with an open charm pair eþe� ! J=c þ c �c,
the NLO QCD correction [11] was also found to signifi-
cantly enhance the cross section (see also [12]) and reduce
the large gap between experiment and the LO calculations
[13].

Another important issue concerns the ratio

Rc �c ¼ �½eþe� ! J=c þ c �cþ X�
�½eþe� ! J=c þ X� : (1)

Belle found first Rc �c ¼ 0:59þ0:15
�0:13 � 0:12 [2] and later

Rc �c ¼ 0:82� 0:15� 0:14 [14]. On the contrary, LO
NRQCD [13,15] and light-cone perturbative QCD predic-
tions [16] for the ratio are only about 0.1–0.3. The color
evaporation model gives a value of only 0.06 [17].

In NRQCD, �½J=c þ X� includes color-singlet contri-
butions �½J=c ð3S½1�1 Þ þ c �c� and �½J=c ð3S½1�1 Þ þ gg� and
color-octet contributions �½J=c ð3P½8�

J ; 1S½8�0 Þ þ g�. Contri-
butions of other Fock states are suppressed by either�s, the
strong coupling constant, or v, the relative velocity be-
tween quark and antiquark in heavy quarkonium.

�½J=c ð3P½8�
J ; 1S½8�0 Þ þ g� was calculated at LO in �s [18],

and an apparent enhancement at the J=c maximum energy

was predicted. But experiments did not show any enhance-
ment at the end point. The resummations of the v expan-
sion and logð1� zÞ, where z ¼ Ec �c=E

max
c �c , are considered

[19], but the theoretical results rely heavily on the phe-
nomenological shape function. It is possible that the ob-
served end point behavior of J=c and the large ratio Rc �c

might indicate that the color-octet matrix elements are
much smaller than previously expected. To test this thought
we assume the color-octet contribution to be ignored and
consider only the color-singlet contributions. Under this
assumption, the ratio becomes

Rc �c ¼ �½J=c þ c �c�=ð�½J=c þ c �c� þ �½J=c þ gg�Þ:
(2)

In the following, we concentrate on �ðJ=c þ ggÞ in
NRQCD. Aside from the LO calculations in NRQCD (see
related references in [13,15]), Ref. [20] considered
�½J=c þ gg� within the framework of soft collinear ef-
fective theory, and Ref. [21] summed over the leading and
next-to-leading logarithms in the end point region of
�½J=c þ gg�. However, considering the crucial impor-
tance of the NLO QCD corrections found in many heavy
quarkonium production processes [6–8,11,12,22], it is nec-
essary to carry out the calculation of NLO QCD correction
to eþe� ! J=c þ gg.
We now present this calculation. We use FEYNARTS [23]

to generate Feynman diagrams and amplitudes, FEYNCALC
[24] to handle amplitudes, and LOOPTOOLS [25] to evaluate
the infrared-finite scalar Passarino-Veltman integrals.
Feynman diagrams for the Born, virtual correction, and
real correction are shown in Figs. 1–3. Note that eþe� !
J=c gc �c is excluded in the real correction, because it
should be included in the J=c production associated
with open charm eþe� ! J=c þ c �cþ X. Moreover, we
include ghost diagrams in the real correction because we
choose unphysical polarizations for the gluons in the final
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state. There are generally ultraviolet (UV), infrared (IR),
and Coulomb singularities. Conventional dimensional
regularization with D ¼ 4� 2� is adopted to regularize
them.

The UV divergences from self-energy and triangle dia-
grams are removed by renormalization. The renormaliza-
tion constants Zm, Z2, and Z3, which correspond,
respectively, to the charm quark mass m, charm field c c,
and gluon field Aa

�, are defined in the on-mass-shell (OS)

scheme, while Zg corresponding to the coupling �s is

defined in the modified-minimal-subtraction (MS) scheme:

�ZOS
m ¼ �3CF

�s

4�
N�

�
1

�UV
þ 4

3

�
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4�
N�

�
1

�UV
þ 2

�IR
þ 4

�
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�
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þ ln
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�
; (3)

where N� ¼ ð4��2

m2 Þ��ð1þ �Þ is an overall factor in our

calculation, 	0ðnfÞ ¼ 11
3 CA � 4

3TFnf is the one-loop coef-

ficient of the QCD beta function, nf ¼ 4 is the number of

active quark flavors, nlf ¼ 3 is the number of light quark

flavors, and � is the renormalization scale.
IR singularities coming from loop integration and phase

space integration of the real correction are found to cancel
each other. We use the method in Ref. [26] to separate the
soft and collinear singularities in the virtual corrections
and then treat the singular part analytically and the finite
part numerically.

We use the phase space slicing method [27] to extract
poles in the real correction. The method introduces a soft

cut �s and a hard collinear cut �c to the phase space. Then
the cut region can be partly integrated and becomes some
color connected Born cross sections multiplied by singular
factors. The remaining region, the hard noncollinear re-
gion, which is nonsingular, can be integrated using the
standard Monte Carlo techniques. In order to make the
method effective, �c � �s is needed as mentioned in
Ref. [27]. With a careful treatment for the two cuts, we
verified that our result is independent of the two cuts in a
large range.
We then find that by considering all NLO virtual and real

corrections, and factoring the Coulomb singular term into
the J=c wave function, we get an UV and IR finite cross
section for eþe� ! J=c þ gg.
In the numerical calculation we use

ffiffiffi
s

p ¼ 10:6 GeV,

�ð4Þ
MS

¼ 338 MeV, and the J=c wave function squared at

the origin jRJ=c ð0Þj2 ¼ 1:01GeV3, which is extracted

from the J=c leptonic width [28] at NLO in �s:

jRJ=c ð0Þj2 ¼
9M2

J=c

16�2½1�ð16=3Þ�s=���J=c!eþe� .

Taking MJ=c ¼ 2m (at LO in v) and m ¼ 1:4 GeV, we

get �sð�Þ ¼ 0:267 for � ¼ 2m, and the cross section at
NLO in �s is �ðeþe� ! J=c ggÞ ¼ 0:496 pb, which is a
factor of 1.19 larger than the LO cross section 0.418 pb. If
we set � ¼ ffiffiffi

s
p

=2, then �s ¼ 0:211, and the cross section
is 0.394 pb. Since the experimental data correspond to the
J=c prompt production, in addition to the direct produc-
tion discussed above, we should also include the feeddown
contributions from higher charmonium states which decay
into J=c . Since for the P-wave states �cJ the direct
production rates in the non-c �c associated process are sup-
pressed (eþe� ! 
� ! �cJgg are forbidden due to charge
parity conservation), and for the c ðnSÞðn > 2Þ states the
decay branching ratios into J=c þ X are negligible, we
need only to consider the c ð2SÞ feeddown contribution.
This implies that an additional enhancing factor of 1.355
should be multiplied [11]. In Fig. 4, we show the prompt
production cross sections at LO and NLO as functions of
the renormalization scale �. We see that NLO QCD cor-
rection substantially reduces the� dependence and enhan-
ces the cross section by about 20%.
The NLO cross sections �ðeþe� ! J=c c �cÞ were cal-

culated in Ref. [11]. We list the values of prompt cross
sections [11] in Table I, together with the prompt cross
sections �ðeþe� ! J=c ggÞ obtained above. Then we can
get the ratio Rc �c at LO and NLO in �s. The dependence of
Rc �c on the renormalization scale � is shown in Fig. 5,

FIG. 2. Feynman diagrams for the virtual correction to
eþe� ! J=c gg.

FIG. 3. Feynman diagrams for the real correction to eþe� !
J=cgg.

FIG. 1. Three of the six Born diagrams for eþe� ! J=c gg.
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where m ¼ 1:4 GeV is fixed. The � dependence for
�ðeþe� ! J=c ggÞ is mild, while for �ðeþe� !
J=c c �cÞ it is strong. A reasonable choice should be be-
tween� ¼ 2mc and� ¼ ffiffiffi

s
p

=2, more preferably the latter.
Finally, we note that the large logarithms of logð1� zÞ

appear at the end point in NLO calculation, where z ¼
EJ=c =E

max
J=c . The leading logarithms (LLs) have been re-

sumed in Refs. [20,21]. Using a similar approach, we
define the differential cross section (and other quantities)
as [21]

d�LOðNLOÞþLL ¼ d�LOðNLOÞ þ P½r; z�d�resum

� P½r; z�ðd�resumÞLOðNLOÞ; (4)

where ðd�resumÞLOðNLOÞ means expanding d�resum in �s to

LO (NLO). To be consistent with our previous calculation,

we choose �c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� zÞp

�H, and �H ¼ � ¼ 2m. In
Fig. 6, we show the cross sections of eþe� ! J=c gg as
functions of the J=c momentum PJ=c . The correction of

LL resummation to the total cross section is about �6:6%
at LO and 0.5% at NLO. But it becomes large at the end
point region when z ! 1, suppressing the LO cross section
and enhancing the NLO cross section. The LL resumma-
tion changes the J=c momentum distribution near the end
point but has only a little effect on the total cross section. It

is interesting to note that, with the NLO correction, the
J=c momentum spectrum becomes much softer than the
LO result.
In summary, we find that, by considering all NLO virtual

and real corrections and factoring the Coulomb singular
term into the c �c bound state wave function, we get an
ultraviolet, infrared, and collinear finite cross section for
the direct production of eþe� ! J=c þ gg at

ffiffiffi
s

p ¼
10:6 GeV, which enhances the cross section by about
20%. By adding the feeddown contribution from c ð2SÞ,
the prompt production cross section of eþe� ! J=c þ gg
at NLO in �s is found to be ð0:67�0:13

þ0:17Þ pb for� ¼ 2m and

ð0:53�0:09
þ0:12Þ pb for � ¼ ffiffiffi

s
p

=2, with m ¼ ð1:4� 0:1Þ GeV.
Together with the calculated �ðeþe� ! J=c c �cÞ at NLO
in �s [11], we get Rc �c � 0:50. The result significantly
reduces the discrepancy between theory and experiment.
The effect of the leading logarithm resummation near the
end point on the J=c þ gg total cross section is found to
be small.

FIG. 4 (color online). Prompt cross sections of eþe� !
J=cgg as functions of the renormalization scale � at LO and
NLO in �s. The upper curves correspond to m ¼ 1:4 GeV, and
the lower ones correspond to m ¼ 1:5 GeV.

TABLE I. Cross sections of prompt (feeddown included)
J=cgg (this Letter) and J=c c �c (Ref. [11]) production in
eþe� annihilation at B factories in units of picobarns.

� ¼ 2:8 GeV � ¼ 2:8 GeV � ¼ 5:3 GeV � ¼ 5:3 GeV
LO NLO LO NLO

�ðggÞ 0.57 0.67 0.36 0.53

�ðc �cÞ 0.38 0.71 0.24 0.53

Rc �c 0.40 0.51 0.40 0.50

FIG. 5 (color online). Rc �c as a function of the renormalization
scale � at LO and NLO in �s. Here mc ¼ 1:4 GeV.

FIG. 6 (color online). The cross section of eþe� ! J=cgg as
functions of the J=c momentum PJ=c . Here � ¼ 2:8 GeV and

m ¼ 1:4 GeV. The solid curve is the NLOþ LL prediction, and
the dotted, short-dashed, and long-dashed curves are the NLO,
LOþ LL, and LO predictions, respectively.
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Note.—Very recently, Belle reported a new measure-
ment with higher statistics [29]:

�ðeþe� ! J=c þ c �cÞ ¼ ð0:74� 0:08þ0:09
�0:08Þ pb; (5)

�½eþe� ! J=c þ non-ðc �cÞ� ¼ ð0:43� 0:09� 0:09Þ pb:
(6)

The observed cross section of eþe� ! J=c þ non-ðc �cÞ
and Rc �c are displayed in Figs. 4 and 5 with central values
and error bands in comparison with theoretical predictions.
We see that our predictions (NLO with feeddown) for
�ðeþe� ! J=c þ ggÞ are consistent with the new mea-
surement of �½eþe� ! J=c þ non-ðc �cÞ� within certain
uncertainties. Moreover, the predicted J=c momentum
spectrum also agrees with the experiment [29].
Importantly, our result of �½eþe� ! J=c þ nonðc �cÞ� in-
dicates that the calculated �ðeþe� ! J=c þ ggÞ has al-
ready saturated the observed�½eþe� ! J=c þ non-ðc �cÞ�,
hence leaving little room for the color-octet contributions.
These are also confirmed by a similar study [30], which
agrees with ours.
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