
Infrared Singularities of Scattering Amplitudes in Perturbative QCD

Thomas Becher1 and Matthias Neubert2

1Fermi National Accelerator Laboratory, Post Office Box 500, Batavia, Illinois 60510, USA
2Institut für Physik (THEP), Johannes Gutenberg-Universität, D-55099 Mainz, Germany

(Received 14 January 2009; published 23 April 2009)

An exact formula is derived for the infrared singularities of dimensionally regularized scattering

amplitudes in massless QCD with an arbitrary number of loops and legs. It is based on the conjecture that

the anomalous-dimension matrix of n-jet operators in soft-collinear effective theory is fully determined by

three functions of �s, which can be extracted from known perturbative results for the quark and gluon

form factors. This allows us to predict the three-loop coefficients of all 1=�k poles for arbitrary n-parton

scattering amplitudes, generalizing existing two-loop results.
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Perturbative expressions for quark-gluon scattering am-
plitudes in massless QCD contain infrared (IR) singular-
ities, which originate from configurations where loop
momenta become soft or collinear. In predictions for physi-
cal observables these cancel against corresponding singu-
larities from real gluon emission by virtue of the Kinoshita-
Lee-Nauenberg theorem [1]. Nevertheless, the IR singu-
larities are interesting in their own right. After their can-
cellation logarithmic terms remain, which depend on the
phase-space cuts imposed. For high-energy scattering pro-
cesses with low-mass jets in the final states, these Sudakov
logarithms dominate the cross section. An understanding
of the structure of IR singularities can be used to predict
and resum these logarithmically enhanced contributions to
all orders. It also serves as a consistency check on loop
calculations.

The IR singularities of QED are understood in all orders
of perturbation theory. They arise from multiple soft pho-
ton emissions. Eikonal identities ensure that higher-order
soft radiation is obtained simply by exponentiating the
leading-order contribution [2]. For non-Abelian gauge
theories the situation is more complicated. The soft emis-
sions receive genuine higher-order corrections [3], and in
addition to soft singularities, collinear ones arise. While
factorization proofs guarantee their absence in inclusive
observables [4], an all-order result for the IR singularities
of QCD amplitudes is currently still lacking. An important
step toward this goal was made by Catani [5], who cor-
rectly predicted the singularities of two-loop amplitudes
apart from the 1=� pole term. His formula states that the
product�
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where sij � 2�ijpi � pj þ i0, and the sign factor �ij ¼
þ1 if the momenta pi and pj are both incoming or out-

going, and �ij ¼ �1 otherwise. The quantities K and gi in

(2) are related to anomalous-dimension coefficients given
below asK ¼ �cusp

1 =ð2�cusp
0 Þ and gi ¼ ��i

0=2, while�0 ¼
11
3 CA � 4

3TFnf is the first coefficient of the QCD � func-

tion. The sums in the expressions above are over all exter-
nal partons. We use the color-space formalism of [6], in
which n-particle amplitudes are treated as n-dimensional
vectors in color space. Ti is the color generator associated
with the ith parton and acts as a matrix on its color index.
The product Ti � Tj � Ta

i T
a
j is summed over a. Generators

associated with different particles trivially commute, Ti �
Tj ¼ Tj � Ti for i � j, while T2

i ¼ Ci is given in terms of

the quadratic Casimir operator of the corresponding color
representation; i.e., Cq ¼ C �q ¼ CF and Cg ¼ CA. Owing

to color conservation, the scattering amplitudes fulfill the
relation

P
iTijMnð�; fpgÞi ¼ 0. The scheme-dependent

quantity Hð2Þ
R:S:, which only contains 1=� divergences, was

not specified in [5]. Based on a number of explicit two-loop
results [7–9], its general form was conjectured in [10].
An interesting alternative approach to the problem of IR

singularities of on-shell amplitudes was developed in [11],
where the authors exploited the factorization properties of
scattering amplitudes [12,13] along with IR evolution
equations familiar from the analysis of the Sudakov form
factor [14]. They recovered Catani’s result (2) at two-loop
order and related the coefficient of the unspecified 1=� pole
term to a soft anomalous-dimension matrix, which was
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unknown at the time. They also explained how their
method could be extended beyond two-loop order. The
two-loop soft anomalous-dimension matrix was later cal-
culated in [15], where its color structure was found to be
proportional to that obtained at one-loop order.

In this Letter we propose an all-order generalization of
Catani’s result (2) valid for an arbitrary on-shell n-parton
scattering amplitude. We find that in a minimal subtraction
scheme the color structure of the IR pole terms is simpler
than anticipated based on Catani’s work [5]. In fact, to all-
loop order the 1=� pole term contains only the structures 1
and Ti � Tj. Our analysis is based on effective field theory

and shares many similarities with that of [11]. However, in
our case the hard, jet, and soft functions are defined in
terms of matrix elements of different types of fields in the
effective theory and thus are associated with different
physical scales. The corresponding definitions in [11] are
less intuitive.

Our key observation is that the IR singularities of on-
shell amplitudes in massless QCD are in one-to-one cor-
respondence to the UV poles of operator matrix elements
in soft-collinear effective theory (SCET) [16,17]. They can
be subtracted by means of a multiplicative renormalization
factor Z (a matrix in color space), whose structure is con-
strained by the renormalization group (RG). SCET is the
appropriate effective theory to analyze scattering processes
at large momentum transfer, which involve jets (or indi-
vidual hadrons) with small invariant masses. It separates
hard contributions associated with the large momentum
transfer from low-energy contributions associated with
the small invariant masses of the initial- and final-state
particles. For a general n-jet observable, the effective
theory involves a set of collinear fields for each direction
of large energy flow, which describe the QCD dynamics
inside the individual jets. It also contains soft quark and
gluon fields, which mediate low-energy interactions
among the jets. Hard interactions are integrated out and
absorbed into the Wilson coefficients of operators built
from soft and collinear fields. A generic n-jet process is
mediated by an effective Hamiltonian H n ¼P

i Cn;ið�ÞOren
n;i ð�Þ, where the sum runs over a basis of

SCET operators built from n distinct types of collinear
fields. The bare matrix elements of these operators are

UV divergent and are renormalized in the MS scheme.
Their divergences are absorbed into a renormalization
factor via Oren

n;i ð�Þ ¼ P
jZijð�; �ÞObare

n;j ð�Þ. For physical

quantities, the scale dependence of the Wilson coefficients
Cn;ið�Þ cancels against that of the matrix elements of the

renormalized operators.
In a physical process with initial- and final-state had-

rons, the soft and collinear scales are set by nonperturba-
tive dynamics or experimental cuts. Let us now consider
(slightly) off-shell n-parton amputated Green’s functions
GnðfpgÞ. In this case the jet-scale �2

J is set by the off-

shellness p2
i of the fields, and the soft scale is �s ��2

J=Q,
where Q is a typical hard momentum transfer. The Green’s

functions are obtained by taking matrix elements of the
above effective Hamiltonian, which can be written as

GnðfpgÞ ¼ lim
�!0

X
i;j

Cn;ið�ÞZijð�; �ÞhObare
n;j ð�Þi; (3)

where we suppress the dependence of the quantities on the
right-hand side on the parton momenta. To obtain on-shell
n-parton scattering amplitudes from these Green’s func-
tions, one takes the limit p2

i ! 0. This introduces IR
divergences, which can be regulated by evaluating the
effective-theory matrix elements in d ¼ 4� 2� dimen-
sions. Doing so renders the matrix elements of the opera-
tors Obare

j trivial: in the limit p2
i ! 0 both the soft and the

jet scales tend to zero, and all loop diagrams in the effective
theory become scaleless and vanish. The bare matrix ele-
ments are thus reduced to trivial Dirac and color structures.
Since the IR divergences are independent of the spin
structure, we will not make the Dirac structures explicit
but simply absorb them into the Wilson coefficients. The
on-shell Green’s functions are then directly proportional to

the Wilson coefficients of n-jet SCET operators in the MS
scheme. In the color-space basis notation of (2), the effec-
tive Hamiltonian reads H n ¼ hOren

n jCni, and we have

jCnðfpg; �Þi ¼ lim
�!0

Z�1ð�; fpg; �ÞjGnð�; fpgÞi: (4)

This notation is convenient but unconventional, in that our
Wilson coefficients and operators are not separately color
singlets and Lorentz scalars. The scattering amplitudes
jMnð�; fpgÞi are obtained by contracting the amputated
on-shell Green’s functions with the spinors and polariza-
tion vectors associated with the external particles. Their
singularities are thus governed by the same Z matrix.
The logarithm of the renormalization factor Z in (4) is

related via � ¼ �d lnZ=d ln� to the anomalous-
dimension matrix � governing the renormalization-group
evolution of the n-jet SCET operators Oren

n . The same
quantity controls the evolution of the Wilson coefficients,
and hence of the minimally subtracted on-shell scattering
amplitudes, via the evolution equation

d

d ln�
jCnðfpg; �Þi ¼ � jCnðfpg; �Þi: (5)

We will now present a conjecture for the exact form of the
anomalous-dimension matrix. In general, � ¼ �cþs is de-
termined by the anomalous-dimension contributions of
collinear and soft modes in the SCET matrix elements.
An important feature of SCET is that the interactions of
collinear fields with soft gluons can be removed by field
redefinitions and absorbed into soft Wilson lines [16].
Interactions with soft quarks are power suppressed and
can be ignored. Moreover, the different collinear sectors
in SCET do not interact with each other. This allows us to
decompose � ¼ �s þP

i�
i
c, where the one-particle col-

linear contributions are diagonal in color space. Hence,
contributions to the anomalous dimension involving corre-
lations between several partons only reside in the soft
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contribution �s. After the decoupling transformation the
soft matrix element is a vacuum expectation value
h0jS1 . . .Snj0i of n lightlike Wilson lines, one for each
external parton (see also [13]). Here

S i ¼ P exp

�
ig

Z 0

�1
dtniA

aðtniÞTa
i

�
; (6)

where ni is a lightlike reference vector aligned with the ith
particle’s momentum. When the color indices are con-
tracted into color-singlet combinations, the soft matrix
element consists of one or more Wilson loops (closed at
infinity), whose lines cross and or have cusps at the origin.
The renormalization properties of Wilson loops have been
studied extensively in the literature (see, e.g., [3,18,19]).
Based on these results and on other considerations to be
explained in detail elsewhere, we propose that the exact
expression for the anomalous-dimension matrix of an n-jet
operator in SCET in the color-space formalism is

� ¼ X
ði;jÞ

Ti � Tj

2
�cuspð�sÞ ln �2

�sij
þX

i

�ið�sÞ: (7)

The sums run over the n external partons. Here and below
the notation ði1; . . . ; ikÞ refers to unordered tuples of dis-
tinct parton indices. Our result contains three universal
anomalous-dimension functions. The quantity �cusp is pro-

portional to the cusp anomalous dimension ofWilson loops
with lightlike segments [19], while �q � � �q and �g are
anomalous dimensions specific for (anti)quark and gluon
fields. They are defined by relation (7).

Our conjecture for the anomalous-dimension matrix is
the simplest expression consistent with existing calcula-
tions. It implies that the cusp anomalous dimension char-
acterizes the renormalization of Wilson lines even in the
general case, where several lines meet at a single space-
time point. The structure of the logarithmic terms in (7)
agrees with an explicit two-loop calculation in [15]. For
the quark and gluon form factors, the divergent terms
are known to three-loop accuracy [20]. When applied to
this case, our general relation (7) implies that the cusp
anomalous dimensions in the fundamental and adjoint
representations of SUðNcÞ are related by �F

cuspð�sÞ=CF ¼
�A
cuspð�sÞ=CA � �cuspð�sÞ. This relation is indeed fulfilled

to three-loop order [21]. The application to the form factors
also determines the anomalous dimensions �q � � �q and
�g to three-loop accuracy. In the effective theory the form
factors are mapped onto two-jet operators containing two
collinear quark or gluon fields. The corresponding three-
loop anomalous dimensions were given in [22]. In the
notation of these papers, we have 2�qð�sÞ ¼ �Vð�sÞ and
2�gð�sÞ ¼ �tð�sÞ þ �Sð�sÞ þ �ð�sÞ=�s, where �ð�sÞ ¼
d�s=d ln�. These results are valid in the standard dimen-
sional regularization schemewith d-dimensional helicities.

The relation � ¼ �d lnZ=d ln� may be integrated to
obtain a closed expression for the logarithm of Z. Using the
relation �ð�s; �Þ ¼ �ð�sÞ � 2��s for the � function in
d ¼ 4� 2� dimensions, we find

lnZ ¼ �
Z �s

0

d�

�ð�; �Þ
�
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Z �

�s

d�0
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�
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where we have defined

�0 ¼ @

@ ln�
� ¼ ��cuspð�sÞ

X
i

Ci: (9)

When integrating over � in (8), the scale� in the argument
of the logarithm in � must be kept fixed. Note that when
acting on color-singlet states, the unweighted sum over
color generators satisfies the relation

X
ði;jÞ

Ti � Tj ¼ �X
i

T2
i ¼ �X

i

Ci; (10)

which follows from color conservation. Since both the
scattering amplitudes and the anomalous dimension � are
color conserving, this relation can always be used in our
case. It is understood that the result (8) must be expanded
in powers of �s with � treated as a fixed Oð�0

sÞ quantity.
Writing the perturbative series of the anomalous dimension
and � function in the form �ð�sÞ ¼

P
n�nð�s

4�Þnþ1 and

�ð�sÞ ¼ �2�s

P
n�nð�s

4�Þnþ1, we find up to three-loop or-

der the result
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which only contains the two color structures present in (7).
Exponentiation yields an explicit expression for Z, which
simplifies since the different expansion coefficients �n

commute. The relevant one-loop coefficients of the three
anomalous-dimension functions are �

cusp
0 ¼ 4, �q

0 ¼
�3CF, and �g

0 ¼ ��0. The highest pole in the Oð�n
s Þ

term of lnZ is 1=�nþ1, instead of 1=�2n for the Z factor
itself. The exponentiation of the higher pole terms was
noted previously in [11].
The one- and two-loop coefficients of the matrix Z are

closely related to Catani’s subtraction operators Ið1Þ and
Ið2Þ given in (2). The conditions linking his objects to ours

are that the differences 2Ið1Þ � Z1 and 4Ið2Þ þ 2Ið1ÞZ1 �
Z2 remain finite for � ! 0. Here Zn denotes the coefficient
of ð�s=4�Þn in the Z factor. The first relation is indeed
satisfied. The second one can be used to derive an explicit

expression for the quantity Hð2Þ
R:S: in (2) entering the two-

loop coefficient of the 1=� pole, which was not obtained in
[5]. We find

PRL 102, 162001 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

24 APRIL 2009

162001-3



H ð2Þ
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which apart from the last term is diagonal in color space
and universal in the sense that it is a sum over contributions
from individual partons. Note that only the first term in this
result is of a form suggested by (11). The remaining terms
in the first line arise because two-loop corrections involv-
ing the cusp anomalous dimension or the� function are not
implemented in an optimal way in (2). More importantly,
the last term in (12), which is present for four or more

partons, arises only because the subtraction operators IðkÞ
in [5] are not defined in a minimal scheme but also include
Oð�kÞ terms with k � 0.

Our expressions (11) and (12) reproduce all known
results for the two-loop 1=�k poles of on-shell scattering
amplitudes in massless QCD. In addition to the on-shell
quark and gluon form factors, these include eþe� ! �qqg
[7] as well as all four-point functions of quarks and gluons
[8,9]. Our result (12) further confirms the ansatz made for
higher-point functions in [10]. At the three-loop level, only
the IR divergences of the quark and gluon form factors are
known for the QCD case [20]. ForN ¼ 4 supersymmetric
Yang-Mills theory in the planar limit, on the other hand, the
four-point functions are known up to four-loop order [23].
The divergent part of these amplitudes factors into a prod-
uct of square roots of form factors of neighboring legs,
which is consistent with the structure of our anomalous

dimension, given that at leading order in 1=Nc one has Ti �
Tj ! � Nc

2 1 for neighboring legs and zero otherwise. A

more stringent test of our conjecture could be performed
using existing three-loop results for the full four-gluon
scattering amplitude in this theory [24], if one succeeds
in evaluating the nonplanar master integrals.

The most important application of our result is the
resummation of Sudakov logarithms in n-jet processes.
The evolution equation (5) is simple enough to admit exact
solutions in closed form, and the known three-loop anoma-
lous dimensions allow for resummations at next-to-next-
to-next-to-leading logarithmic accuracy. Our formalism
can be generalized to processes involving massive partons
by combining it with methods developed in [25,26]. The
great simplicity of our result (7) appears to hint at a
universal origin of IR singularities that is disconnected
from the genuine dynamics of the scattering amplitude
itself.
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