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We extend the definition of ‘‘spectral dimension’’ ds (usually defined for fractal and lattice geometries)

to theories in spacetimes with anisotropic scaling. We show that in gravity with dynamical critical

exponent z inDþ 1 dimensions, the spectral dimension of spacetime is ds ¼ 1þ D
z . In the case of gravity

in 3þ 1 dimensions with z ¼ 3 in the UV which flows to z ¼ 1 in the IR, the spectral dimension changes

from ds ¼ 4 at large scales to ds ¼ 2 at short distances. Remarkably, this is the behavior found

numerically by Ambjørn et al. in their causal dynamical triangulations approach to quantum gravity.
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The idea that the effective spacetime dimension can
change with the scale is not new. One simple thing that
can happen as we probe spacetime at shorter distances is
that extra dimensions can emerge. The fact that our macro-
scopic Universe appears, to a good approximation, four
dimensional is then viewed as a result of course grain-
ing. Such extra dimensions can be of the Kaluza-Klein type
[1–3], or our observed Universe can be the boundary of a
higher-dimensional space [4–7], or a higher codimen-
sion brane, perhaps with additional warping of the full
geometry. Another intriguing possibility is that the nature
of the four macroscopic dimensions themselves may quali-
tatively change with scale. The poor short-distance behav-
ior of general relativity has often been interpreted as an
indication that something radical must happen to space-
time at short distances. It has been speculated that at some
characteristic scale (often related to the Planck scale), the
smooth geometry of spacetime could be replaced by a
discrete structure, or exhibit fractal behavior or a stringy
generalization of geometry, or that the short-distance na-
ture of spacetime might be nongeometric altogether. This
picture is further supported by string theory, in which the
macroscopic spacetime (or at least space) can often be
viewed as an emergent concept.

In recent numerical simulations of lattice quantum grav-
ity in the framework of causal dynamical triangulations
(CDT) [8–10], an interesting phenomenon has been ob-
served: The effective spacetime dimension is four at large
scales, but changes continuously to two at short distances
[11]. The four-dimensional nature of spacetime at large
scales indicates a good long-distance continuum limit.
However, the interpretation of the change in dimension at
shorter scales is not clear. Perhaps the geometry undergoes
a dynamical dimensional reduction, or develops a foamy
structure at short distances. The lattice methods of dynami-
cal triangulations do not offer enough analytical control
over the dynamics of geometry. It would be desirable to
compare this against an analytical tool in a continuum
framework. The CDT approach to quantum gravity has
one distinguishing feature: The triangulations are restricted

to conform to a preferred causal structure, given by a
preferred foliation by slices of constant time. This is mo-
tivated by the desire to maintain causality and leads to the
suppression of baby universes, which—when present—are
believed to be responsible for the pathological branched-
polymer scaling in the continuum limit. This preferred
causal structure of the CDT framework is reminiscent of
the symmetries in the recently proposed Lifshitz phase of
quantum gravity [12,13], which is defined in the path-
integral framework and exhibits anisotropic scaling at short
distances. The degree of anisotropy is measured by the
dynamical critical exponent z, which changes from z ¼ 3
in the UV to the relativistic value z ¼ 1 in the IR. In this
Letter, we present some evidence suggesting that the CDT
approach to lattice gravity may in fact be a lattice version
of the quantum gravity at a Lifshitz point. Using the same
definition of dimension as in the CDT approach [11], we
show that in the continuum framework of [13] the effective
dimension of the Universe flows from four at large dis-
tances to two at short distances, reproducing the lattice
results of [11].
In principle, there are many different ways of defining

the dimension of a fluctuating geometry. Here we follow
[11], and consider a measure of dimension which has
proven useful in discretized approaches to quantum gravity
in low dimensions: the ‘‘spectral dimension’’ of spacetime.
The idea is simple: Spectral dimension of a geometric
object M is the effective dimension of M as seen by an
appropriately defined diffusion process (or a random
walker) on M. Such a process is characterized by the
probability density �ðw;w0;�Þ of diffusion from point w
to w0 in M, in diffusion time �, subjected to the initial
condition �ðw;w0; 0Þ ¼ �ðw� w0Þ. The average return
probability Pð�Þ is obtained by evaluating �ðw;w0;�Þ at
w ¼ w0 and averaging over all pointsw inM. The spectral
dimension of M is then defined as

ds ¼ �2
d logPð�Þ
d log�

: (1)

For example, in the case of M ¼ Rd with the flat
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Euclidean metric, we obtain

�ðw;w0;�Þ ¼ e�ðw�w0Þ2=4�

ð4��Þd=2 : (2)

In this case, (1) gives dsðRdÞ ¼ d, which simply repro-
duces the topological dimension of the Euclidean space.
The spectral dimension can be defined in a manifestly
coordinate-independent way, which makes it applicable
to a wide range of objects beyond smooth manifolds,
including objects with fractal behavior. Indeed, systems
are known for which ds is not an integer: e.g., the spectral
dimension of branched polymers [14] is ds ¼ 4=3.

The spectral dimension has been used [15–22] as one of
the simplest observables probing the continuum limit in the
lattice approach to quantum gravity in two dimensions.
This case is relevant for the description of fluctuating world
sheets in noncritical string theory. In the nonperturbative
definition of the system in terms of dynamical triangula-
tions and matrix models, the spectral dimension of world
sheets has been found to be ds ¼ 2 [19], as long as the
central charge of the world sheet matter sector is c � 1.
Above this c ¼ 1 barrier, the ensemble of fluctuating ge-
ometries is believed to collapse to a branched-polymer
phase. This expectation has been further confirmed by
the measurement of the spectral dimension in [15], yield-
ing ds ¼ 4=3 above c ¼ 1. Interestingly, this simplest
branched-polymer phase of two-dimensional gravity is in
fact the lowest member of an infinite family of multicritical
phases [16], parametrized by m ¼ 2; 3; . . . , and with spec-
tral dimensions

ds ¼ 2m=ð2m� 1Þ: (3)

In [11], the spectral dimension of spacetime was mea-
sured in the numerical CDT approach to quantum gravity
in 3þ 1 dimensions, with intriguing results. At long dis-
tances, the spectral dimension found by [11] is

ds ¼ 4:02� 0:1: (4)

With the changing scale, however, the spectral dimension
appears to smoothly decrease to the short-distance limit,
given by [11]

ds ¼ 1:80� 0:25: (5)

This value is consistent with an effective reduction of
spacetime to two dimensions at short distances.

In field theories with anisotropic scaling, the degree of
spacetime anisotropy is characterized by the dynamical
critical exponent z,

x ! bx; t ! bzt: (6)

Models with z � 1 are common in condensed matter (see,
e.g., [23]). Theories of gravity with various values of z in
various spacetime dimensions Dþ 1 were introduced in
[12,13]. The case of Yang-Mills theory with z ¼ 2 was
discussed in [24]. For power-counting renormalizability of
gravity in 3þ 1 dimensions, we need z ¼ 3 at short dis-
tances [13] (see also [25]). A theory of gravity in 3þ 1
dimensions with z ¼ 3 was presented in [13]. The field

content consists of the spatial metric gij, together with the

lapse and shift variables Ni and N. The theory is invariant
under foliation-preserving diffeomorphisms DiffF ðMÞ of
spacetime, which take the coordinate form ~xi ¼ ~xiðt; xjÞ
and ~t ¼ ~tðtÞ. The action is given by

S ¼ 2

�2

Z
dtd3x

ffiffiffi
g

p
NfKijK

ij � �ðKi
iÞ2 �V g: (7)

Here Kij ¼ ð1=2NÞð _gij �riNj �rjNiÞ is the extrinsic

curvature of the preferred time foliation. The first two
terms in (7) represent the covariant kinetic term, of second
order in time derivatives, with � and � two dimensionless
couplings undetermined by the DiffF ðMÞ symmetries. The

potential term V in (7) is a local function of gij and @kgij
independent of _gij. Unlike the kinetic term which is uni-

versal, the precise form ofV depends on the desired value
of z. For example, general relativity requiresV / R� 2�
(and � ¼ 1 for full spacetime diffeomorphism invariance),
implying the relativistic value z ¼ 1.
In condensed matter, a particularly interesting class of

models with z � 1 satisfies an additional condition of
‘‘detailed balance.’’ Those models are intimately related
to a Euclidean theory in one lower dimension. In the case
of gravity in 3þ 1 dimensions, this condition means that
V � ð�W=�gijÞ2, withW the action of a gravity theory in

three dimensions. (The square is performed with the ap-
propriate De Witt metric; see [12,13] for details.) The z ¼
3 gravity introduced in [13] is described by (7) withVC ¼
�4

16w4 CijC
ij, where Cij ¼ �ik‘rkðRj

‘ � 1
4�

j
‘RÞ is the Cotton

tensor, and w is a dimensionless coupling. Since Cij ¼ 0

follows from the variation of the Chern-Simons action
W ¼ ð1=w2ÞRð� ^ d�þ 2

3 � ^ � ^ �Þ, the theory satisfies

detailed balance. This condition can be explicitly broken
by adding diffeomorphism invariant terms of sixth order in

spatial derivatives, such as riRjkriRjk or Ri
jR

j
kR

k
i , to V .

This does not change the value of z, but theories without
detailed balance are more complex due to the proliferation
of independent terms in the action. Luckily, the spectral
dimension will turn out to be a very universal observable,
sensitive only to the scaling (6) but not to the details ofV .
The global scaling transformations (6) can be general-

ized to the case of curved and fluctuating spacetime ge-
ometries. In [13], the local anisotropic Weyl trans-
formations with z ¼ 3 were introduced,

gij!e2�ðx;tÞgij; Ni!e2�ðx;tÞNi; N!e3�ðx;tÞN: (8)

(Other values of z were discussed in [12].) These trans-
formations represent a local version of the global aniso-
tropic scaling (6) of flat space, adapted to the general
background gij, Ni, and N. They form a closed symmetry

group with the foliation-preserving diffeomorphisms
DiffF ðMÞ (see [12,13]). Since Cij transforms covariantly

under spatial conformal transformations, the potential term
V C is invariant under (8). At the special value � ¼ 1=3,
the kinetic term is also invariant under (8).
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In z ¼ 3 gravity, the leading term V C in V is of the
same dimension as the kinetic term �K2, and dominates
V at short distances. However, the DiffF ðMÞ symmetries

allow a number of relevant terms in V , which affect the
dynamics at long distances: The theory flows to lower z,
and ultimately to z ¼ 1. Such relevant terms in V can be
generated without violating detailed balance by adding two
relevant terms to the three-dimensional Chern-Simons ac-
tion W: the Ricci scalar R and the cosmological constant
term. This turnsW into the action of topologically massive
gravity, and results in the modified potential

V ¼ �4

16w4
CijC

ij þ � � � � c2

2�2
ðR� 2�Þ: (9)

[The ‘‘. . .’’ in (9) stand for terms of fourth and fifth order in
spatial derivatives.] From the perspective of the z ¼ 3 UV
fixed point, c and � are relevant coupling constants of
dimension two (in units of momentum). The last two terms
in (9) constitute the potential V in general relativity. At
long distances, it is natural to redefine the time coordinate
to reflect the z ¼ 1 scaling, by setting x0 ¼ ct. The theory
in the infrared then closely resembles general relativity,
with the effective Newton constant GN ¼ �2=ð32�cÞ.

To compare the behavior of the spectral dimension in the
lattice CDT approach [11] with our analytic approach, we
must extend the definition of spectral dimension to smooth
spacetimes with anisotropic scaling. What is the appropri-
ate diffusion process to consider? The spectral dimension
of the Minkowski spacetime (with z ¼ 1) is measured [11]
by rotating to imaginary time t ¼ �i�; on the Euclidean
space, the diffusion process is described by the probability
density � of (2), governed by the diffusion equation
@�=@� ¼ ð@2=@�2 þ�Þ�, with � � @i@i the spatial
Laplacian. This can be naturally generalized to the case
of z > 1. In gravity with anisotropic scaling, the time
dynamics stays the same as in the z ¼ 1 case; it is the
spatial dynamics that changes with the changing potential
V . This suggests that the natural diffusion process at
general z is governed by the anisotropic equation

@

@�
�ðx;�;x0;�0;�Þ¼

�
@2

@�2
þð�1Þzþ1�z

�
�ðx;�;x0;�0;�Þ:

(10)

Indeed, both terms on the right-hand side of (10) scale the
same way under the anisotropic rescaling (6). The relative
sign ð�1Þzþ1 in (10) is determined from the requirement of
ellipticity of the diffusion operator. The formula is valid for
integer z, but our results below can be analytically con-
tinued to any positive real z.

The anisotropic diffusion equation (10) is solved by

�ðx;�;x0;�0;�Þ¼
Z d!dDk

ð2�ÞDþ1
ei!ð���0Þþix�ðx�x0Þ��ð!2þjkj2zÞ:

(11)

In order to determine the spectral dimension, we only
need � at the coincident initial and final spacetime points,

�ðx;�;x;�;�Þ¼
Z d!dDk

ð2�ÞDþ1
e�ð!2þjkj2zÞ¼ C

�ð1þD=zÞ=2 ; (12)

with some nonzero constant C. Using (1), we obtain the
spectral dimension of spacetime with anisotropic scaling,

ds � �2
d logPð�Þ
d log�

¼ 1þD

z
: (13)

This implies the central result of this Letter: In 3þ 1
dimensions with z ¼ 3, the spectral dimension (13) is
equal to ds ¼ 2 at short distances. Under the influence of
the relevant deformations, the theory flows to z ¼ 1 in the
infrared, and (13) reproduces the macroscopic value ds ¼
4 at long distances. In (13), ds was evaluated in a fixed
classical spacetime geometry, with gij ¼ �ij, N ¼ 1, and

Ni ¼ 0, and gives therefore the leading value of ds in the
semiclassical approximation. The definition of ds can be
generalized to the full quantum theory, by defining the
covariant anisotropic diffusion operator on an arbitrary
geometry, and averaging the return probability over all
geometries in the path integral. However, with quantum
corrections assumed small, the scale dependence of the
spectral dimension will be dominated by the change in the
anisotropic scaling of the classical solution, from z ¼ 3 in
the UV to z ¼ 1 in the IR.
A nonzero cosmological constant may preclude the flat

geometry from being a solution. If so, ds will become
sensitive at cosmological scales to the characteristic space-
time curvature. However, such finite-size effects will not
change the effective value of ds at intermediate scales.
We have extended the notion of spectral dimension to

the continuum framework of quantum gravity with aniso-
tropic scaling, and found that the behavior of ds matches
qualitatively the lattice results obtained by [11] in the CDT
approach. This raises the intriguing possibility that the
continuum limit of the causal dynamical triangulations
may belong to the same universality class as the aniso-
tropic theory of gravity [13], flowing from the anisotropic
scaling with z ¼ 3 in the UV to the relativistic value z ¼ 1
in the IR. The possibility that the CDT lattice approach is
effectively a lattice description of quantum field theory of
gravity with anisotropic scaling presented in [12,13] is
further supported by the symmetries imposed in the two
frameworks. As reviewed above, theories of gravity with
anisotropic scaling are invariant under foliation-preserving
diffeomorphisms; the spacetime manifold is equipped with
a preferred causal structure, compatible with anisotropic
scaling [see Fig. 1(a)]. On the other hand, the novelty of the
CDT approach to lattice gravity is that the sum is per-
formed over lattice geometries with a preferred ‘‘causal
structure’’ [Fig. 1(b)]. It is this extra condition on the
discretizations which changes favorably the continuum
limit, and prevents the collapse of the partition sum to a
branched-polymer phase. It is plausible that the continuum
limit of the lattice sum automatically identifies a mecha-
nism leading to its UV completion in the minimal way
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compatible with the preferred foliation, in terms of gravity
with anisotropic scaling and z ¼ 3 at short distances.

The short-distance lattice value (5) of the spectral di-
mension is consistent within the margin of error with z ¼
3. However, the mean value is closer to ds with z ¼ 4.
Theories with z ¼ 4 in 3þ 1 dimensions satisfying the
detailed balance condition were discussed in [13]: They are
constructed from the three-dimensional action W contain-
ing terms up to quadratic in the Ricci tensor. (Such models
of three-dimensional gravity have recently been discussed
in [26].) Reasons why gravity with z ¼ 4 might be desir-
able in 3þ 1 dimensions were discussed in [13].

Even though the main focus of this Letter is on gravity in
3þ 1 dimensions, our result (13) for the spectral dimen-
sion of spacetime with anisotropic scaling is general, with
possible applications to quantum gravity in other dimen-
sions. For example, it is intriguing that the spectral dimen-
sions (3) observed in the multicritical branched-polymer
phases of discretized two-dimensional gravity can be re-
produced by continuum theories in 1þ 1 dimensions with
anisotropic scaling and the integer multicritical values of
the dynamical exponent z ¼ 2m� 1.

The spectral dimension also plays a prominent role in
the thermal behavior of systems with anisotropic scaling.
Simple scaling arguments show that the free energy of free
massless fields at the Lifshitz point with dynamical critical

exponent z scales with temperature as F� T1þD=z ¼ Tds .
Notably, when D ¼ z (the critical dimension of gravity
with anisotropic scaling), the behavior of the free energy
F� T2 is the same as in a relativistic conformal theory in
1þ 1 dimensions. This scaling has been seen before [27],
in the ensemble of free strings formally extrapolated above
the Hagedorn temperature TH. An example of anisotropic
gravity with z ¼ 9 in 9þ 1 dimensions can be obtained by
following the logic of [13]: Starting withW � R

!9 [where
!9 ¼ � ^ ðd�Þ4 þ � � � is the Chern-Simons 9-form] and
setting V ¼ ð�W=�gijÞ2 leads to a theory with detailed
balance in 9þ 1 dimensions with z ¼ 9, whose high-
temperature behavior at the free fixed point matches the
scaling found in [27] in superstring theory above TH.

In conclusion, we have demonstrated that even for
smooth spacetime geometries, the spectral dimension
does not have to match the topological dimension. The
discrepancy can simply result from anisotropic scaling,
compatible with a preferred causal structure of spacetime.
This suggests an alternative interpretation of the dynamical

reduction of spacetime at short distances [11] observed in
the lattice approach to quantum gravity: This behavior
does not have to indicate a change in the topological
dimension of spacetime, or a foamy structure in which
the four macroscopic dimensions result from coarse grain-
ing over topologically complicated two-dimensional ge-
ometries. Instead, the behavior of [11] can simply be
explained by anisotropic scaling of space and time at short
distances, keeping the topology of spacetime four dimen-
sional and its geometry smooth and topologically trivial.
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FIG. 1. (a) The preferred foliation by time slices in the con-
tinuum approach of gravity with anisotropic scaling, and (b) a
characteristic lattice configuration in the CDT approach.
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