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We define a new class of random walk processes which maximize entropy. This maximal entropy

random walk is equivalent to generic random walk if it takes place on a regular lattice, but it is not if the

underlying lattice is irregular. In particular, we consider a lattice with weak dilution. We show that the

stationary probability of finding a particle performing maximal entropy random walk localizes in the

largest nearly spherical region of the lattice which is free of defects. This localization phenomenon, which

is purely classical in nature, is explained in terms of the Lifshitz states of a certain random operator.
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Since the seminal papers by Einstein [1] and
Smoluchowski [2] which formulated the theory of
Brownian motion and diffusive processes, random walk
(RW), the paradigmatic discrete-time realization of these
processes, has continuously attracted attention. RW has
been discussed in thousands of papers and textbooks in
statistical physics, economics, biophysics, engineering,
particle physics, etc., and is still an active research area
(see, e.g., [3]). Mathematically speaking, RW is a Markov
chain which describes the trajectory of a particle taking
successive random steps. In the simplest case of generic
random walk (GRW) on a lattice, at each time step the
particle chooses at random one of the adjacent nodes and
jumps to it. In the continuum limit, the probability density
of finding the particle at a given position obeys the diffu-
sion equation. When the lattice is regular (i.e., all nodes
have the same degree), it is easy to show that all trajectories
(sequences of nodes visited by the particle) of a given
length between two given points of the lattice are equi-
probable, and thus have maximal entropy. It will, how-
ever, be shown below that, as soon as the lattice is not
regular, GRW trajectories are no longer equiprobable.
Equiprobable trajectories naturally enter the path-integral
formalism [4] of quantum mechanics, where trajectories
are only weighted by their length, playing the role of the
action in the absence of a potential energy. The question
therefore arises whether random trajectories in curved
spaces (discretized as irregular lattices) should be con-
structed by GRW or rather by another kind of RW that
leads to equiprobable paths. Finally, another example of
interest is provided by the path-integral Monte Carlo meth-
ods [5], where the key issue is precisely to generate the
‘‘right’’ path statistics.

In this Letter we examine physical properties of a RW
defined by the requirement that all trajectories between two
given points are equiprobable, even on an irregular lattice.
We shall see that this new definition leads to a dramatic
change in the behavior of RW on a irregular lattice. Let us

summarize our main results. First, we define the maximal
entropy random walk (MERW) and show that it indeed
maximizes the entropy of trajectories, in contrast to ge-
neric random walk (GRW), which has smaller entropy.
Second, we discuss a surprising effect of localization of
MERW trajectories in the presence of weak disorder. This
is a purely classical example of the Lifshitz phenomenon
[6]. Some kind of localization has been observed before in
RWon networks with a broad distribution of nodes degrees
[7], but for MERW the effect is completely different in
nature, since it can be triggered by any small amount of
inhomogeneity.
To begin, let us consider quite generally a particle hop-

ping from node to node on a given finite, connected graph.
The graph is defined by a symmetric adjacency matrix A,
with elements Aij ¼ 1 if i and j are neighboring nodes and

Aij ¼ 0 otherwise. The hopping is a discrete-time local

Markov process: the particle sitting at some moment at
node i will hop to a neighboring node j with probability
Pij, independently of the past history. The elements of the

transition matrix are Pij ¼ 0 if Aij ¼ 0, that is if nodes i, j

are not linked, and for each node i one has
P

jPij ¼ 1.

The main quantity of interest is the probability, �iðtÞ, of
finding the particle at node i at time t. One can calculate it
recursively, as �iðtþ 1Þ ¼ P

j�jðtÞPji. Using spectral

properties of the matrix Pij, one can show that �iðtÞ
generically reaches a unique stationary state ��

i obeying
the following equation:

��
i ¼

X

j

��
jPji: (1)

For GRW, Pij ¼ Aij=ki, where ki ¼
P

jAij is the degree of

node i. This means that the particle hops to an adjacent
node with the same probability for all neighbors. The sta-
tionary distribution of GRW reads

��
i ¼

kiP
j kj

: (2)
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Another quantity of interest, especially important from

the point of view of entropy, is the probability Pð�ðtÞ
i0it

Þ of
generating a trajectory �ðtÞ

i0it
of length t passing through the

nodes ði0; i1; . . . ; it�1; itÞ:
Pð�ðtÞ

i0it
Þ ¼ Pi0i1Pi1i2 � � �Pit�1it : (3)

In general Pð�ðtÞ
i0it

Þ depends on all nodes on the trajectory.

For GRW we have Pð�ðtÞ
i0it

Þ ¼ 1=ðki0ki1 . . . kit�1
Þ, so that the

trajectories are manifestly not equiprobable. An exception
is GRW on a k-regular graph, whose nodes have identical
degrees, as, for instance, on a regular lattice. In general,
however, trajectories produced by GRWare not maximally
random. As we will see below, there exists, though, a
natural choice of Pij such that all trajectories of given

length t and given endpoints are equiprobable. This choice
defines MERW.

Let us now present the explicit construction of MERW.
Let c i be the normalized eigenvector (

P
ic

2
i ¼ 1) corre-

sponding to the largest eigenvalue � of the adjacency
matrix A:

X

j

Aijc j ¼ �c i: (4)

The eigenvalue � is clearly in the range kmin � � � kmax,
where kmin and kmax are the maximal and minimal node
degrees of the graph, respectively. The Frobenius-Perron
theorem tells us that all the c i are of the same sign, so that
one can choose c i > 0. Let us use this eigenvector to
define the following transition matrix:

Pij ¼
Aij

�

c j

c i

: (5)

By construction, the entries Pij are positive if i and j are

neighboring nodes. They are also properly normalized:P
jPij ¼ 1. A similar construction has been recently pro-

posed in the context of optimal information coding [8]. The
weight (3) is now independent of intermediate nodes:

Pð�ðtÞ
i0it

Þ ¼ 1

�t

c it

c i0

; (6)

and thus all trajectories having length t and given endpoints
i0 and it are equiprobable. For a closed trajectory, the
probability (6) only depends on its length t. The stationary
distribution of MERW is

��
i ¼ c 2

i ; (7)

which is easy to check by combining Eqs. (5) and (1). It is a
normalized probability:

P
i�

�
i ¼ 1, and the detailed bal-

ance condition is fulfilled: ��
i Pij ¼ ��

jPji.

We intuitively see that random trajectories generated by
MERW are more random than those generated by GRW,
since the probability of a given random path (6) is inde-
pendent of intermediate nodes. This statement can be

quantified by comparing the entropy production rates of
both Markov processes. Let Pði0; i1; . . . ; itÞ be the proba-
bility of a sequence ði0; i1; . . . ; itÞ in the set of all sequences
of length t generated by the Markov chain. The Shannon
entropy in this set of sequences is

St ¼ � X

i0;i1...it

Pði0; . . . ; itÞ lnPði0; . . . ; itÞ: (8)

One can show [9] that the entropy St asymptotically grows
at a fixed rate

s � lim
t!1

St
t
¼ �X

i

��
i

X

j

Pij lnPij: (9)

For GRW, with Pij ¼ Aij=ki and ��
i from Eq. (2), we

obtain the entropy production rate

sGRW ¼
P

i ki lnkiP
i ki

; (10)

whereas MERW, with transition rates (5) and stationary
distribution (7), yields sMERW ¼ ln�. We now show that
sMERW is indeed the maximal entropy rate which can be
obtained for any stochastic process generating trajectories
on the graph. The number of trajectories of length t on the
graph is Nt ¼ P

i;jðAtÞij, where At is the tth power of the

adjacency matrix. We therefore obtain the asymptotic
value

sMAX ¼ lim
t!1

lnNt

t
¼ ln�; (11)

which sets the upper limit for the entropy production rate
of such processes. We see that sMERW ¼ sMAX, so that
MERW indeed maximizes entropy. The inequality sGRW �
sMAX is equivalent to

P
iki lnki=

P
jkj � ln�. For a

k-regular graph, sGRW ¼ sMERW ¼ lnk. Similarly, for a
bipartite graph which has nodes of degree k in one partition
and of degree k0 in the other one, sGRW ¼ sMERW ¼ 1

2 �
lnðkk0Þ.
As already mentioned, GRW and MERW are identical

on a k-regular graph. The question then arises how much
the two types of RW differ on a graph or lattice with some
irregularities. For definiteness, imagine that we remove at
random a small fraction q � 1 of nonadjacent links from
an L� L square lattice with periodic boundary conditions.
In this way we obtain a lattice with a weak disorder
(dilution), where most of the nodes are of degree k ¼ 4
and some of degree k ¼ 3. The stationary distribution ��

i

for GRW is given by Eq. (2), so that the probability of
finding the particle after a long time at a defective node is
equal to 3=4 of the probability at an intact one. The
situation looks completely different for MERW, as shown
in Fig. 1, presenting density plots of ��

i for different
densities of defects, obtained by diagonalizing A numeri-
cally and using Eq. (7). For a very low density q of defects,
the probability ��

i is smaller in the neighborhood of de-
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fects, like in the GRW case. However, if the number of
defects increases, the stationary distribution ��

i becomes
localized in a nearly circular region. We will indeed show,
using the Lifshitz argument [6], that this localization phe-
nomenon takes place for any nonzero fraction of defects,
provided the linear size L of the system is large enough,
and that the radius of the localization region grows as

ðlnLÞ1=2.
Let us start with a 1d example, in order to build up some

intuition. As a model example we shall consider a ladder
graph with periodic boundary conditions, with a fraction q
of randomly removed rungs, as shown in Fig. 2. In order to
define the transition probabilities (5) we have to solve the
eigenvalue problem for the adjacency matrix A. Let L be
length of the ladder. Taking into account the symmetry
between both legs, we have

c iþ1 þ c i�1 þ ric i ¼ �c i; (12)

where i runs over the L nodes in the lower leg of the ladder,
say, and ri ¼ 1 if there is a rung at the position i, and ri ¼
0 otherwise. Introducing the discrete Laplacian �ij ¼
�i;jþ1 þ �i;j�1 � 2�ij, Eq. (12) can be recast as

� ð�c Þi þ vic i ¼ Ec i; (13)

where E ¼ 3� �, whereas vi ¼ 1� ri form a random
binary sequence with a frequency of unities or defects
(vi ¼ 1) equal to q and a frequency of zeros (vi ¼ 0) equal
to p ¼ 1� q. Each sequence of nodes without defects
(vi ¼ 0) is said to form a well. Equation (13) is formally
identical to the eigenvalue equation of the following trap-
ping problem. A particle performs a RW in continuous time
on the 1d lattice. Defects act as static traps: whenever the
particle sits at node i, it is annihilated at rate vi per unit
time. Trapping problems of this kind have been studied
extensively [10]. The asymptotic longtime falloff of the
survival probability is known to be related to the so-called
Lifshitz tail in the density of states of Eq. (13) as E ! 0. In
the present context, the Lifshitz argument [6] predicts that
the ground state of Eq. (13) is well approximated by that of

the longest well, i.e.,�ð�c Þi ¼ E0c i (i ¼ 1; . . . ; w), with
Dirichlet boundary conditions c 0 ¼ c wþ1 ¼ 0, where w
is the length of that well. We obtain c i � sin½i�=ðwþ 1Þ	
and E0 ¼ 2½1� cos�=ðwþ 1Þ	 
 �2=w2. In the 1d situ-
ation [11], this argument is known to essentially give an
exact description of the ground state.
In the case of MERW, we therefore predict that the

whole stationary probability is asymptotically localized
on the longest well, i.e., the longest sequence without
defects. The Lifshitz picture is well illustrated by Fig. 2,
showing plots of the stationary density ��

i , obtained by
numerical diagonalization of A. The asymptotic growth of
the length w of the longest well can be estimated as
follows. The mean number of unities in the sequence grows
as Lq. The mean number of those followed by one zero is
Lqp, by two zeros is Lqp2, and so on, so that there are
Lqpn wells of length n, i.e., consisting of n zeros. The
lengthw of the longest well, given by the estimate Lqpw �
1, grows logarithmically with the system size, as w 

lnL=j lnpj, so that E0 
 ð�j lnpj= lnLÞ2. In Fig. 3 we
show that the ground-state energy E0 obtained by numeri-
cally solving Eq. (13), averaged over binary disorder for
q ¼ 0:1, agrees with the above estimate for L large
enough.
The Lifshitz argument can be generalized to higher-

dimensional situations [12]. The ground state of the dis-
cretized Schrödinger equation (13) is localized in the larg-
est Lifshitz sphere, defined as the largest nearly spherical

FIG. 1. Density plots of ��
i for a periodic square lattice of size

L� L, for L ¼ 40 and the fractions q ¼ 0:001, 0.01, 0.1 of
removed links. The nodes incident with removed links are
marked with circles. Data are obtained numerically by applying
the Lanczos algorithm to the adjacency matrix. For a sparse
matrix used here, the algorithm has a complexity OðN2Þ, where
N ¼ L2 in two dimensions. Plots for other values L; q can be
produced using the demonstration [16].
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FIG. 2. Top: a ladder with randomly removed rungs. Bottom:
stationary distribution ��

i on the ladder for L ¼ 500 and five
randomly positioned defects marked with vertical lines.

3 4 5 6 7
ln L

4

6

8

10

12

14

16

E
0-1

/2

FIG. 3. Ground-state energy E0 of Eq. (13) on ladders versus
lnL for L ¼ 20; . . . ; 960 and q ¼ 0:1. The solid line shows the

estimate E�1=2
0 ¼ lnL=ð�j lnpjÞ þ B, with B fitted to the right-

most data point.
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region of the lattice which is free of defects. Taking again
for definiteness the example of the square lattice, the radius
Rmax of the largest Lifshitz disk can be estimated to be

Rmax 
 ð lnL=ð�j lnpjÞÞ1=2, since the number of circular

regions of radius R with no defects is of order L2p2�R2
,

as there are two links per node. In higher dimension d, the

above estimate reads Rmax � ðlnL=j lnpjÞ1=d, skipping con-
stants. Hence the stationary probability of MERW on a
d-dimensional lattice in the presence of any amount of
disorder is localized in the largest Lifshitz sphere, whose
volume grows as lnL. Inside the sphere, the MERW essen-
tially has a diffusive character.

In conclusion, the MERW introduced in this work is a
local process, in the sense that the particle jumps to neigh-
boring nodes. The local transition rates, however, depend
on the global structure of the graph through its Perron-
Frobenius vector. MERW is indeed the result of globally
maximizing the entropy of trajectories, in contrast to GRW,
which can be viewed as the result of a greedy entropy
maximization at each step. On the other hand, although
MERW requires the knowledge of the entire system, this
knowledge is not always advantageous for the random
walker. It indeed turns out that generating all paths with
equal probability may prevent the walker from exploring
the entire space. This occurs, e.g., on lattices with weak
dilution, where the particle gets localized by a Lifshitz
phenomenon. Interestingly, this effect can be put in per-
spective with ergodicity breaking resulting from entropy
barriers [13]. It is therefore tempting to consider MERWas
a simple model of evolution in a flat fitness landscape but
with entropic traps. In the course of evolution, the system
goes through consecutive metastable states, i.e., larger and
larger local Lifshitz spheres, until it finally reaches the true
ground state, i.e., the largest Lifshitz sphere.

Let us close with a comment on the connection between
MERW and path integrals in curved space. The quantum-
mechanical amplitude for a free particle propagating in a
curved, discretized space-time is usually calculated as a
sum over GRW trajectories. In quantum gravity [14] the
d-dimensional space is discretized into simplices. If a free
particle propagates on the dual graph formed by the centers
of simplices, the underlying graph is ðdþ 1Þ regular, so
that MERWand GRWare equivalent. On the other hand, if
it propagates on the original graph, which is irregular, then
the two types of RWare different. It would be interesting to
compare the MERW and GRW quantum particle propaga-
tion in Lorentzian quantum gravity [15]. It may happen
that the free particle will tend to localize in tubelike regions
extended in the temporal direction due to spatial ‘‘defects’’

that arise from quantum fluctuations of Lorentzian
geometry.
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