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We address, on the example of a simple solvable model, the issue of whether the stationary state of

dissipative systems converges to an equilibrium state in the low dissipation limit. We study a driven

dissipative zero range process on a tree, in which particles are interpreted as finite amounts of energy

exchanged between degrees of freedom. The tree structure mimics the hierarchy of length scales; energy is

injected at the top of the tree (large scales), transferred through the tree, and dissipated mostly in the

deepest branches of the tree (small scales). Varying a parameter characterizing the transfer dynamics, a

transition is observed, in the low dissipation limit, between a quasiequilibrated regime and a far-from-

equilibrium one, where the dissipated flux does not vanish.
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One of the main challenges of nonequilibrium statistical
physics is to understand which principles rule the descrip-
tion of nonequilibrium steady states. Linear response the-
ory [1] has been developed for systems, subjected to small
external gradients, which remain close to equilibrium, and
for which the effect of the small drive is thus perturbative.
A different situation is that of dissipative systems, in which
an energy flux is injected at large scales, and cascades
down, through nonlinear interactions, to smaller scales
where it is dissipated. Examples include hydrodynamic
turbulence [2], wave turbulence in fluids, plasma [3], and
vibrating plates [4], fracture [5] and friction [6], granular
materials and foams [7]. A natural question is to know
whether in the limit of small, but nonzero dissipation, the
steady state of the system becomes close to some equilib-
rium state to be determined. One may expect that adding a
tiny amount of injection and dissipation to a conservative
system breaks energy conservation, but leads to small
fluctuations around a given energy level selected by the
injection and dissipation mechanisms. The system would
thus merely behave as if it was at equilibrium at this
energy.

Whether this scenario holds in general is an open issue.
Such approaches have been proposed in the context of two-
dimensional turbulence [8], for which the flux of dissipated
energy vanishes in the small viscosity limit. However, in
other situations such as three-dimensional turbulence [2] or
granular gases [9], the dissipated flux remains finite for
small viscosity, suggesting that the system does not con-
verge to any equilibrium state.

In order to give further insight into these issues, we study
a simple solvable stochastic transport model, namely, an
open zero range process (ZRP) [10], that describes in a
schematic way the transfer of energy between scales, in the
presence of injection and dissipation. To account for the
hierarchical organization of scale space, we define our
model on a Cayley tree [11], each level being interpreted
as a given scale. The advantage of this specific geometry

with respect to more conventional ones (e.g., one-
dimensional lattice) is twofold: the tree is self-similar, so
that subsystems have the same structure as the global
model, and scales are spaced logarithmically, which allows
interactions to be treated as local. We show that depending
on the energy transfer dynamics, the dissipative stationary
state of the model converges in the weak dissipation limit
either to an equilibrium state, or to a well-defined far-from-
equilibrium state with a finite dissipated flux. The simplic-
ity of our model (nonlinear interactions at play in real
systems are replaced by an effective diffusion process)
allows us to compute the exact stationary distribution and
macroscopic observables of interest. Possible implications
of our results for more realistic systems are then discussed.
The model is defined on a Cayley tree composed of M

successive levels (see Fig. 1); at any given level j <M, all
sites have m> 1 forward branches that link them to level
jþ 1, so that the number of sites at level j is mj�1. Sites
are thus labeled by the level index j, and the index i ¼
1; . . . ; mj�1 within level j. The energy on each site (j, i) of
the tree is assumed to take only discrete values propor-
tional to an elementary amount "0, namely "j;i ¼ nj;i"0.

Energy transfer proceeds as follows: an energy amount "0
is moved, either forward or backward, along any branch
between levels j and jþ 1 with a rate �j. In the absence

of driving and dissipation, the dynamics satisfies detailed
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FIG. 1. Sketch of the model, illustrating the tree geometry.
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balance. Energy injection is implemented by connecting the site (1, 1) to a thermostat of temperature Text ¼ ��1
ext , with a

coupling frequency �ext. Dissipation proceeds through the random withdrawal of an amount of energy "0 at site (j, i) with
rate �j. The master equation governing the evolution of the probability distribution Pðfnj;ig; tÞ reads:

@P

@t
ðfnj;ig; tÞ ¼ �

�XM�1

j¼1

mj�1ð2m�j þ �jÞ þmM�1�M þ �extð1þ e��ext"0Þ
�
Pðfnj;ig; tÞ

þ XM�1

j¼1

Xmj�1

i¼1

Xm
l¼1

�j½Pðnj;i þ 1; njþ1;ði�1Þmþl � 1; fnq;rg; tÞ þ Pðnj;i � 1; njþ1;ði�1Þmþl þ 1; fnq;rg; tÞ�

þ XM
j¼1

Xmj�1

i¼1

�jPðnj;i þ 1; fnq;rg; tÞ þ �ext½Pðn1;1 þ 1; fnq;rg; tÞ þ e��ext"0Pðn1;1 � 1; fnq;rg; tÞ�: (1)

In this last equation, fnq;rg is a shorthand notation for all the
variables that are not explicitly listed. Turning to the sta-
tionary state, we look for a steady-state probability distri-
bution of the form

Pstðfnj;igÞ ¼ 1

Z

YM
j¼1

Ymj�1

i¼1

e��jnj;i"0 ; (2)

where �j is an effective inverse temperature (to be deter-
mined) associated to level j, and Z is a normalization
factor. Inserting expression (2) of the stationary distri-
bution into the master equation (1) yields a set of equa-
tions to be satisfied by the parameters zj ¼ expð��j"0Þ,
for j ¼ 2; . . . ;M� 1:

�j�1ðzj�1 � zjÞ �m�jðzj � zjþ1Þ ¼ �jzj; (3)

with the boundary conditions

�extðe��ext"0 � z1Þ �m�1ðz1 � z2Þ ¼ �1z1; (4)

�M�1ðzM�1 � zMÞ ¼ �MzM: (5)

Note that these equations correspond to the local balance of
the diffusive fluxes �jðzj � zjþ1Þ and dissipative fluxes
�jzj. In the absence of dissipation, namely, if �j ¼ 0 for
all j, the equilibrium solution �1 ¼ . . . ¼ �M ¼ �ext is
recovered. To study the dissipative case, we need to choose
a specific form of the frequency �j and the dissipation rate
�j. A generic form is the following:

�j ¼ �1k
�
j ; �j ¼ Dk�j ; � > 0; (6)

where we have introduced a pseudo wave number kj ¼
mj�1, to map the tree structure onto physical space.
Parameters �1 and D are, respectively, a frequency char-
acterizing the large scale dynamics, and a dissipation
coefficient. We impose the condition �< �, so that dis-
sipation becomes the dominant effect at small scales (large
kj). The transfer rate �j and the dissipation rate �j are
balanced for a wave number kj ¼ K given by

K ¼
�
�1

D

�
1=ð���Þ

; (7)

which goes to infinity in the limit of small dissipation
coefficient D (�1=D is similar to the Reynolds number in
hydrodynamics). For largeK, we shall call the ranges kj �
K and kj � K the inertial and dissipative ranges, respec-

tively. The solution of Eqs. (3)–(5), can be evaluated
numerically. We are interested in the inertial range behav-
ior, where energy transfer dominates over dissipative ef-
fects, so that we shall explore the solutions by varying �
while keeping � fixed. We first compute the mean energy
flux � injected by the reservoir,

� ¼ �extðe��ext"0 � e��1"0Þ: (8)

The flux � is plotted as a function of � in Fig. 2(a), for a
broad range of values of the dissipation coefficient D. We
observe a transition around the value � ¼ �1: for �<
�1, � ! 0 when D ! 0, while for �>�1, � converges
to a finite value in the small D limit. These two regimes
are also clearly seen in Figs. 2(b)–2(d) by plotting the
temperature Tj ¼ ��1

j ¼ �"0= lnzj as a function of
lnkj ¼ ðj� 1Þ lnm. A first trivial observation is that K
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FIG. 2. Numerical solution of Eqs. (3)–(5), for � ¼ 2 and D ¼
10�x, with x given in (a); same symbols for all four figures.
(a) Energy flux � as a function of �; the full line is �0 given in
Eq. (10). (b) Temperature Tj ¼ ��1

j versus lnkj for � ¼ �2; the

full line is Text. (c) �j versus lnkj for � ¼ 1; full line: �
neq
j

defined in Eq. (14). (d) Same data as (c) plotted as Tj, on the

same window of lnkj as (b). Arrows in (b) and (c) indicate the

value of K for each D. Other parameters: M ¼ 50, m ¼ 2, �1 ¼
1, �ext ¼ 0:1, �ext ¼ 1, "0 ¼ 1.
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increases more rapidly when decreasingD for larger values
of �. More interestingly, we observe that for � ¼ �2
[Fig. 2(b)], the temperature profile slowly converges to
the equilibrium profile Teq

j ¼ ��1
ext when D ! 0, while

for � ¼ 1 [Figs. 2(c) and 2(d)], it converges to a well-
defined nonequilibrium profile, which is linear for kj & K
when plotting�j as a function of lnkj [see Fig. 2(c)]. These
results can be interpreted as follows. When the transfer
mechanism is inefficient at small scales (�<�1), dissi-
pative scales are not ‘‘fed,’’ so that energy accumulates at
large scales, generating an effective equilibrium. In the
opposite case (�>�1), the transfer mechanism is effi-
cient at small scales, thus ‘‘pumping’’ energy from large
scales to dissipative ones.

Most of the above behavior can be understood using a
simpler form of the dissipation, which leads to analytically
tractable calculations. We assume that �j ¼ 0 for all j <

M, leaving a nonzero dissipation rate �M only on the last
level j ¼ M of the tree. As a first step, we look for the
solutions of Eqs. (3) and (4) with �j ¼ 0, j ¼ 1; . . . ;M�
1, without taking into account the dissipative boundary
condition (5). For � � �1, we find a family of solutions,
parametrized by the flux �:

zj ¼ e��ext"0

�
1��

�
1

�0

� 1

Bk1þ�
j

��
; (9)

where j ¼ 1; . . . ;M, and with �0 and B given by

�0 ¼ �1ðm�m��Þ�exte
��ext"0

�1ðm�m��Þ þ �ext

; (10)

B ¼ �1ðm�m��Þe��ext"0 : (11)

Note that zj smoothly converges to e��ext"0 when � ! 0,

and is a decreasing function of kj for �> 0. Interestingly,

Eq. (9) imposes an upper bound�max on the flux�, which
is determined by the condition zM > 0:

�max ¼
�
1

�0

� 1

Bk1þ�
M

��1
: (12)

If �<�1, one finds for large M that �max � jBjk�j1þ�j
M ,

so that �max ! 0 when M ! 1. Accordingly, whatever
the small scale boundary condition, the flux vanishes in the
large size limit. In contrast, if �>�1, �max converges to
�0 > 0 in the large size limit M ! 1; �0 goes to zero
linearly with � when � ! �1þ.

We now use the dissipative boundary condition (5) to
determine the precise value of the flux. Equation (5) states
that the diffusive flux � is equal to the dissipated flux on
level j ¼ M. This condition leads to � ¼ mM�1�MzM, or
using kM ¼ mM�1, zM ¼ �=ðkM�MÞ. Equating this value
of zM with that given in Eq. (9) for j ¼ M, yields an
equation for �, which is solved into

� ¼ �max

�
1þ e�ext"0�max

kM�M

��1
: (13)

Identifying kM with the value K defined in Eq. (7), we get

�M ¼ DK� ¼ �1K
�, and thus kM�M ¼ �1K

1þ�. For �<
�1, both kM�M and �max are for large K proportional to

K�j1þ�j, so that their ratio is a constant. From Eq. (13), �
goes to zero as a finite fraction of the maximum flux�max.

Using K �D�1=ð���Þ, the flux � behaves in terms of the
dissipation coefficient as ��D� when D ! 0, with � ¼
j1þ �j=ð�� �Þ. From Eq. (9), �j ! �ext when D ! 0,

as long as kj � K. Altogether, the effect of dissipation on

the system may be considered as perturbative in the case
�<�1. The perturbation expansion is, however, singular,
with a nontrivial exponent�< 1. In the opposite case �>
�1, �max ! �0 > 0, while kM�M ! 1. Hence from
Eq. (13), � is equal for large K (or small D) to the maxi-
mum flux �max ¼ �0, consistently with Fig. 2(a) [12].
From Eq. (9), the temperature profile �j ¼ �"�1

0 lnzj
converges to a well-defined nonequilibrium profile

�neq
j ¼ 1

"0
ð1þ �Þ lnkj þ �ext þ 1

"0
lnC; (14)

with C ¼ 1þ �1ðm�m��Þ=�ext. Although this profile
has been obtained with a simplified version of the model,
one sees on Fig. 2(c) that �j computed numerically in the

original model also converges to �
neq
j . Let us emphasize

that �neq
j does not depend on parameters related to dissi-

pation [13], but only on parameters characterizing injec-
tion and transfer. The temperature profile is continuous
with �, namely �j ! �ext when � ! �1þ. Note also

that the coupling �ext simply renormalizes the inverse
temperature �ext; the low coupling limit corresponds to
driving the system with a small effective temperature.
To sum up, it turns out that an equilibrium approach to

the stationary state of the present model in the weak dis-
sipation limit is meaningful only if �<�1. In this case,
the probability distribution Pstðfnj;igÞ converges, in a weak

sense, to the equilibrium distribution of temperature �ext.
In the opposite case �>�1, the probability distribution
Pstðfnj;igÞ converges when D ! 0 to a well-defined non-

equilibrium probability distribution Pneqðfnj;igÞ, given by

Eqs. (2) and (14) [14]. In order to discuss the implications
of such different behaviors, we now compute the average
value of large scale observables, which are not sensitive to
small scale details of the distribution and in principle
accessible to measurements in real systems. These include
observables Y defined as

Y ¼ XM
j¼1

�
gðkjÞ

Xmj�1

i¼1

fðnj;iÞ
�
; (15)

where fðnÞ is an arbitrary function, and gðkÞ satisfies
kgðkÞ ! 0 when k ! 1. Figure 3(a) illustrates the con-
vergence of hYi as a function of �. When �<�1, hYi
converges to the equilibrium value hYieq. In contrast, for

�>�1, hYi converges to the nonequilibrium value hYineq
(computed from the distribution Pneq), which depends on �

and thus on the energy transfer.
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Other relevant statistical quantities are sensitive to the
small scale details of the distribution, and have a more
complex behavior. This is the case of the entropy S ¼
�P

fnj;igPstðfnj;igÞ lnPstðfnj;igÞ. Figure 3(b) shows the nor-

malized entropy S=NK, where NK ¼ mK=ðm� 1Þ is the
volume of the inertial range (i.e., the number of sites with
kj � K). Convergence to a limit curve is observed only for

�<�1. From a simple scaling argument, we find that S is

proportional to NK if �<�1 and to Nj�j
K if �1<�< 0,

while S is independent of NK for �> 0. Hence the dis-
sipative state characterized by Pneqðfnj;igÞ has a much

lower entropy than the quasiequilibrium state obtained
for �<�1 and the accessible volume in phase space is
much smaller than in equilibrium states.

Finally, we consider the energy spectrum, a quantity
often reported in experiments. For dissipative systems
described by hydrodynamic equations, energy transfer be-
tween modes is most often due to the nonlinear terms in
these equations (instead of the linear diffusive dynamics of
the present model). Assuming the dominant nonlinear term
to be of order p, and to involve q space derivatives (e.g.,
p ¼ 2 and q ¼ 1 for the Navier-Stokes equation), a gen-
eralization of Kolmogorov K41 argument [2] leads to an
energy spectrum proportional to�

�
0 k

�� with� ¼ 2=ðpþ
1Þ and � ¼ 1þ q�, where �0 is the dissipated energy
flux. This dimensional argument implicitly assumes that
the dissipated flux remains finite in the low dissipation
limit. In the present model, the energy spectrum is
hni;j"0i / �0k

�1��
j ; by identification, we get p ¼ 1 (in

agreement with the diffusive dynamics of the model)
and, more interestingly, � ¼ q. Hence the parameter �
may be interpreted as the order of derivation in the hydro-
dynamic transfer term. Note that we thus expect � � 0,
consistently with the assumption of a finite dissipated flux.
It would be interesting to generalize the model to account
for the case p > 1 (where nontrivial scalings of the spec-
trum with �0 appear) and for other types of geometries,
such as finite-dimensional lattices [15].

The major interest of our model is to provide the exact
solution for the nonequilibrium probability distribution of
microscopic configurations, thus giving insights on how to

build a statistical physics for dissipative systems. Indeed,
our results suggest a simple approximation scheme to
describe the far-from-equilibrium state of weakly dissipa-
tive systems, by assuming (i) that each scale is equilibrated
at a given temperature, and decorrelated from the others,
and (ii) that the dissipated flux is the maximal one given the
injection mechanism. Although very simple, this strategy
yields exact results in the present model, and may be
considered as a mean-field treatment in more general situ-
ations. Testing the predictions of this approach in realistic
models would be of great interest.
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FIG. 3. (a) hYi as a function of �, forD ¼ 10�x; Y is defined in
Eq. (15), with here fðnÞ ¼ n and gðkÞ ¼ k�2. The full line is the
asymptotic value of hYi for D ! 0. (b) Normalized entropy
S=NK versus �, for the same values of D as (a). Other parame-
ters: same as in Fig. 2.
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