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Within a generalized Caldeira-Leggett model, we analyze the conditions under which a bosonic heat

bath can entangle two microscopic quantum systems at a distance r. We find that the attainable

entanglement is extremely distance-sensitive. Significant entanglement can only be achieved if the

systems are within a microscopic distance that is of order of the cutoff wavelength � of the system-

bath interaction. At larger distances, the maximal entanglement is exponentially suppressed with a decay

length of order �. We conclude that entanglement generation via a heat bath is not suitable for entangling

remote objects.
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Establishing and preserving quantum-mechanical entan-
glement [1] between two remote microscopic physical
systems is an experimentally challenging undertaking.
Generally speaking, the difficulties arise from the fact
that the systems need to significantly interact with each
other (in order to build up an entangled common state), and
at the same time, the two systems must be thoroughly
shielded from interaction with external degrees of freedom
(in order to preserve the entangled state against decoher-
ence [2]). In most physical situations, these two require-
ments appear to be contradicting to each other and
therefore can be only partially fulfilled.

During the last years, a fresh look at this entangling
dilemma has emerged from theoretical work on the dy-
namics of entanglement in open systems, notably from the
work of Braun [3,4] and Benatti et al. [5,6]. It has been
shown that under suitable conditions, two two-level sys-
tems [3–5,7,8] or two harmonic oscillators [6,9] can be-
come entangled by mere interaction with a common
bosonic heat bath, without any direct interaction between
the microscopic systems. In such a situation, the coupling
to the heat bath has two relevant effects: it leads to deco-
herence, as it usually does, but it also mediates an effective
interaction between the systems. When the latter one is
strong enough to overcompensate the decohering effect,
the coupling to the heat bath may eventually lead to
entangled microscopic systems. Entanglement generation
via environmental modes is, needless to say, a sophisti-
cated mechanism. Its theoretical analysis therefore neces-
sarily has to rely on idealizing assumptions, and it is still
not clear to which extent these assumptions can be met in
real systems.

We pursued research that especially addresses the role of
the spatial distance r between the microscopic systems on
the entangling mechanism. In doing so, we fully account
for dissipative system-bath interactions by investigating an
exactly solvable model along the lines of Ullersma [10],
and Caldeira and Leggett [11]. Existing studies [4,8] of the
distance dependence are either confined to a dissipation-

free spin-boson model or treat dissipation on a perturbative
level only. In contrast to the comparatively moderate
power-law dependence observed in [4,8], here we find
significant entanglement between the systems only if the
distance r does not much exceed the cutoff wavelength �
of the system-bath interaction. At larger distances, Emax,
the maximum attainable logarithmic negativity (as a mea-
sure of entanglement [12]), decreases exponentially with a
decay length of order �. We argue that � will be typically
of order of the spatial extension of the microscopic systems
and thus conclude that entanglement generation via a heat
bath is limited to truly microscopic distances only.
In our model, the two remote microscopic quantum

systems are represented by two identical harmonic oscil-
lators located on a line at positions x1=2 ¼ �r=2. The
choice of harmonic oscillators makes the model exactly
solvable. Nevertheless, we still expect it to capture the
basic physical behavior of any system with a discrete
spectrum (cf. [13]). The oscillators, henceforth called the
system oscillators, have massm and frequency!0, and P1,
Q1 and P2, Q2 denote their canonical variables. They
are coupled to an extended, one-dimensional heat bath
consisting of symmetric ( / coskx) and antisymmetric
(/ sinkx) harmonic modes of wave numbers k > 0 and
frequencies !k ¼ ck, c being the velocity of sound/light.

Let ps=a
k , qs=ak denote their respective canonical variables.

We consider a bilinear system-bath interaction HI, where
the two oscillators locally couple to symmetric and anti-
symmetric bath modes in the same manner,

HI ¼
X
k

gkðQ1 þQ2Þqsk cos
kr

2
þ gkðQ1 �Q2Þqak sin

kr

2
:

The coupling strengths gk may be characterized as usual by

a spectral function Jð!Þ :¼ P
k

g2
k

2mk!k
�ð!�!kÞ. Here, we

assume Jð!Þ to be linear for small ! with a Drude cutoff,

Jð!Þ ¼ 2m�
� ! �2

�2þ!2 , leading to ohmic damping with a

damping constant �. Typically, the cutoff frequency � �
2�c=� is not some intrinsic frequency of the bath; rather, it
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will be determined by the physics of the system-bath
coupling. Then, since generally jgkj markedly declines
when jkj�1 falls below the spatial extension l of the micro-
scopic systems, a good order of magnitude estimate is ��
l, meaning that �� 2�c=l.

We also include a counter-term Vc ¼
P

k
g2
k

2mk!
2
k

½Q2
1 þ

2Q1Q2 cosðkrÞ þQ2
2� in the total Hamiltonian. Its purpose

is twofold: first, it removes the frequency renormalization
caused by the coupling to the bath [11]; second, it ensures
that the Quantum Langevin Equations (QLE) which we are
going to derive below will only contain retarded couplings
between the oscillators.

The dynamics of the system oscillators can be ap-
proached by means of the Heisenberg equations of motions
for their coordinates Q1, Q2. Following the analysis in
[14], they can be written as two coupled QLE,

€Q1ðtÞ þ!2
0Q1ðtÞ þ d

dt

Z t

0
dt0½�0ðt� t0ÞQ1ðt0Þ
þ �rðt� t0ÞQ2ðt0Þ� ¼ B1ðtÞ (1)

and a similar equation where 1 and 2 are interchanged.
Here, we introduced a distance d dependent damping

kernel �dðtÞ ¼ ��ðe��jt�dj þ e��jtþdjÞ, and bath opera-
tors

B1=2ðtÞ ¼
X
k

~gk cos
kr

2
ei!ktbyk � ~gk sin

kr

2
ei!ktayk þ H:c:;

where ~gk ¼ ð@g2k=mk!km
2Þ1=2, and byk , bk and ayk , ak are

creation and annihilation operators of a symmetric and
antisymmetric bath mode k. Note that the operators
B1=2ðtÞ evolve freely in time; the backaction of the two

oscillators on the bath modes is solely contained in the
memory terms in the QLE. The QLE also have a clear
classical interpretation: the two oscillators are subjected to
friction with a damping constant �, they are coupled via a
bath-mediated retarded interaction, and they are exposed to
stochastic forces B1=2ðtÞ. Without Vc, the QLE also would

exhibit terms proportional to Q1ðtÞQ2ðtÞ, corresponding to
an instantaneous, direct coupling of the two oscillators. In
principle, the appearance of such term is possible because
our model does not obey Lorentz invariance. Nevertheless,
here we are interested in the bath-mediated coupling of the
oscillators, and therefore eliminated the direct couplings
by adding Vc to the system Hamiltonian.

The formal solution of the QLE is simple, once they are
written in the form

_yðtÞ þZyðtÞ þ d

dt

Z t

0
dt0Cðt� t0Þyðt0Þ ¼ BðtÞ; (2)

where y ¼ ðQ1; Q2; _Q1; _Q2Þ, B ¼ ð0; 0; B1; B2Þ, and Z and
CðtÞ are 4� 4 matrices whose definitions become obvious
by comparison of Eq. (2) with the original QLE. Then, the
solution yðtÞ of Eq. (2) for initial yð0Þ and inhomogeneity
BðtÞ is

y ðtÞ ¼ GðtÞyð0Þ þ
Z t

0
dt0Gðt� t0ÞBðt0Þ; (3)

where the Green’s function GðtÞ solves the homogeneous

part of Eq. (2). Its Laplace transform ĜðsÞ ¼ ½sþZþ
sĈðsÞ��1 can be calculated analytically.
Correlations and entanglement in the two oscillator

system can be studied on the basis of the oscillator’s
dimensionless covariance matrix C,

Clm ¼ h~yl~ym þ ~ym~yli�s
� tr½ð~yl~ym þ ~ym~ylÞ�s�;

where �s is the joint state of the system oscillators. The
vector ~y is obtained from y by multiplying the first and

second entry with ðm!0=@Þ1=2, and the third and forth entry
with ðm=@!0Þ�1=2. Assuming that at time t ¼ 0, the total
state factorizes in an initial oscillator state �s and a thermal
state �T of the bath, the temporal evolution of the covari-
ance matrix follows with Eq. (3) to be

CðtÞ ¼ GðtÞCð0ÞGðtÞy

þ
Z t

0
dt0

Z t

0
dt00Gðt� t0ÞKðt0 � t00ÞGðt� t00Þy:

Here, Cð0Þ is the covariance matrix of the initial oscillator
state �s. The matrix KðtÞ ¼ 2mhBðtÞBð0Þyi�T

=@!0 con-

tains the correlations of the bosonic fields B1=2. Its non-

vanishing entries are K34ðtÞ ¼ K43ðtÞ, equal to
8�

�!0

Z 1

0
d!!

�2

�2 þ!2
coth

!

2T
cos!t cos!r;

and two diagonal elements K33ðtÞ ¼ K44ðtÞ, which are
given by the same expression, but with r ¼ 0.
We quantify the amount of entanglement of the two

oscillators by the logarithmic negativity E. In case of a
Gaussian state �s of the oscillators, E can be conveniently
determined from the correlation matrix C as follows: First,
one applies a time-reversing operation [15] on the second
oscillator, according to which the covariance matrix trans-

forms to Clm ! ~Clm ¼ ð�1Þ�l4þ�m4Clm. Then, the sym-

plectic eigenvalues �1; �2 of ~C yield the logarithmic
negativity as E ¼ �P

2
j¼1 log2 minð1; �jÞ [12]. In this

way, the entanglement dynamics of the two oscillators
follows from the temporal evolution of the correlation
matrix C, provided that the oscillator state is Gaussian
for all times. This is the case when we restrict ourself to
Gaussian initial states since this property is conserved
under the dynamics of the quadratic Hamiltonian. Note
that for Gaussian states a vanishing logarithmic negativity
is equivalent to separability [15].
Having outlined our model and the methods we have

used, let us now present our results. Our main interest is the
generation of entanglement from an initially separable
oscillator state �sð0Þ via the coupling with the bosonic
bath. Since there are no reasons for certain initial separable
states being preferred to other ones, here we present only
results where initially the system oscillators are in their
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ground state. The bath is assumed to be initially in a
thermal state �T of temperature T. Thus, the total state is
Gaussian, and we can determine the logarithmic negativity
E as a function of time as outlined above. In the following,
we will mainly show numerical data demonstrating the
characteristic dependence of the entanglement generation
on distance r, cutoff frequency�, damping constant �, and
temperature T. Generally, we measure distances in units of
c=!0, frequencies in units of !0, and temperature in units
of @!0=kB.

First, we consider the entanglement of the two oscil-
lators at large times. For any finite distance r, one finds
GðtÞ ! 0 for t ! 1, meaning that the initial oscil-
lator state becomes irrelevant at large times. Hence,
the asymptotic covariance matrix is C1 ¼R1
0 dt0

R1
0 dt00Gðt0ÞKðt0 � t00ÞGðt00Þy. The time integra-

tions together with the oscillating factors in Kðt0 � t00Þ
represent Laplace transformations, which eventually result
in a single ! integral over terms containing the factor

jĜði!Þj2. The remaining integration over ! can be easily
performed numerically. Figure 1 shows the asymptotic
logarithmic negativity E as a function of the distance r
between the oscillators. Clearly, the entanglement de-
creases with distance and drops to zero at rather small
critical distances d0. The dependence of d0 on the inverse
cutoff frequency � for different temperatures can be seen
in the inset of Fig. 1. For � * !0, we find the critical
distance d0 to be inversely proportional to the cutoff fre-
quency, d0 � ac=�, where a is a coefficient of order unity
(at T ¼ 0) that decreases with increasing temperature. The
distance d0 is rather insensitive to the actual value of the
damping constant �. For instance, the critical distance of
d0 ¼ 0:151 (in units of c=!0) at � ¼ !0 and T ¼ 0 just
changes to 0.12 or 0.17 when the damping is increased or
lowered by a factor of 10, respectively.

Now we consider how the logarithmic negativity devel-
ops in time. Determining the time-dependent covariance

matrix CðtÞ involves an inverse Laplace transformation,
which we performed numerically using Durbin’s formula
[16]. Results for vanishing and three nonvanishing dis-
tances r below the critical distance d0 are shown in
Fig. 2. All curves show a characteristic peak at short times
within which the logarithmic negativity reaches its maxi-
mum value Emax. After its decay, the logarithmic negativity
slowly recovers in an oscillatory manner to its asymptotic
value, where the frequency of the oscillation is approxi-
mately !0=2. The oscillations decay rather slowly with
time because the relative coordinate Q1 �Q2 of the two
oscillators is weakly damped for the small distances r
under consideration. This behavior does not change much
for distances slightly above d0. However, at larger dis-
tances r > 0:18c=!0, the logarithmic negativity does not
recover at all but remains zero for all later times.
Focusing on the short time behavior of E, the initial peak

actually resolves in two peaks, as shown in Fig. 3. The first
peak appears immediately after switching on the interac-
tion at times t less than r=c. Since bosons cannot have been
exchanged between the two system oscillators within this
time span, we attribute this peak to entanglement that had
been already present in the bath [17]. Switching on the
interaction might immediately transfer part of that entan-
glement to the oscillators. This behavior can be addressed
by a short time expansion of CðtÞ, which, at zero tempera-
ture, eventually results in

EðtÞ � 4

ln2

�

!0

fe�ðr�=cÞ�t� ��tð�tÞ2 þOð�tÞ3g; (4)

with an �t dependent ��t � 0:2937� 1
� ln�t. From this

expansion, we find that for r * c=� width and height
of the first peak are exponentially suppressed in the pa-
rameter r�=c by factors less than � expð�r�=cÞ and
� expð�2r�=cÞ, respectively.
The second peak in the logarithmic negativity is delayed

by a little bit more than r=c, which suggests that it refers to
entanglement due to exchange of bosons. Its height de-
creases monotonically with distance r and, in fact, reaches
zero at a relatively small distance d1 that is constrained by
the inverse cutoff frequency. At zero temperature and

FIG. 1 (color online). Asymptotic entanglement of the system
oscillators measured in logarithmic negativity E as a function of
distance r (in units of c=!0) for temperatures T ¼ 0, 0.1, 0.2,
and 0:3� @!0=kB (upper to lower curves), damping constant
� ¼ !0, and cutoff frequency � ¼ 10!0. E drops to zero at a
rather small critical distance d0 & c=�, which for the above
temperatures is proportional to��1 (cf. inset). The fitted straight
lines (dashed lines) have slopes a ¼ 1:51, 1.18, 0.72, 0.25.

FIG. 2. Logarithmic negativity E as function of time (in units
of 1=!0) for distances r ¼ 0, 0.05, 0.1, and 0:15� c=!0 (upper
to lower curves) below the critical distance d0, T ¼ 0, � ¼
10!0, and � ¼ !0. Dashed lines represent asymptotic values.
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damping � ¼ !0, numerical data show d1ð�Þ & 6:0c=�
(cf. inset of Fig. 3). We expect that the actual value of the
damping constant � has only minor influence on d1 (as like
on the distance d0), since numerical data as well as Eq. (4)
show that in first approximation � scales only the ampli-
tude of EðtÞ.

We conclude that generally for distances r significantly
larger than c=�, the logarithmic negativity EðtÞ reaches its
total maximum Emax within an exponentially short time
t0 & expð�r�=cÞ=� and then vanishes for all times t *
2t0. Moreover, at these distances, the maximum value Emax

is exponentially suppressed in 2r�=c.
To summarize, by analyzing the time-dependent loga-

rithmic negativity of two oscillators coupled to a bosonic
bath, we found strong evidence that the entanglement
mechanism under consideration is limited to rather small
distances r of order of c=�, i.e., to distances of order of the
cutoff wavelength �. In practice, this length corresponds to
the spatial extension of the microscopic systems to be
entangled. At larger distances, the maximum achievable
logarithmic negativity is exponentially suppressed in,
roughly, r=�. We believe that this behavior is characteristic
for bath-mediated entanglement in general since there
seem to be no features of the investigated oscillator model
which would make it special for entanglement. In fact, the
general picture outlined here is fully supported by results
that we obtained for an alternative two-spin-boson model
[18]. Having said this, one may summarize our findings by
stating that generally two objects can only be efficiently
entangled via the interaction with a heat bath if they are in
the immediate vicinity of each other.

It might appear puzzling that the environment quickly
and strongly entangles with the two oscillators (which,
after all, is the origin of the ubiquitous phenomenon of
decoherence), while the two oscillators for their own re-
main essentially disentangled (if they are remote from each
other). The reason behind this strongly asymmetric behav-

ior is the large asymmetry in the (effective) Hilbert space
dimensions of the participating systems: few oscillator
states interact with a continuum of bath states. Assuming
that the generic state of the joint system is well represented
by a randomly chosen state of the joint system, it follows
from [19] that for dimensional reasons, the bath is strongly
entangled with each oscillator, while the system oscillators
on their own remain separable. Thus, our analysis particu-
larly demonstrates that under the actual dynamics—gen-
erated by a standard bilinear system-bath interaction—a
nongeneric initial state rapidly evolves to a generic one.
Interestingly, the considered interaction fails to produce
this effect if the distance r becomes less or of the order of
the cutoff wavelength �, as evidenced in significant entan-
glement of the system oscillators in this case.
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FIG. 3. Short time behavior of E for r ¼ 0:15, 0.2, and 0.4 (in
units of c=!0, top to bottom). The initial peak of EðtÞ visible in
Fig. 2 resolves in two peaks. The first peak is exponentially
suppressed in 2r�=c. The second peak is delayed by approxi-
mately r=c. Its height decreases with r and vanishes for distances
r � d1. The inset shows d1 as function of the inverse cutoff
frequency 1=� (in units of 1=!0).
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