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We encode periodic spatiotemporal patterns in Ising-spin neural networks, using the simple learning

rule inspired by the spike-timing-dependent synaptic plasticity. It is then found that periodically

oscillating spin neurons successfully reproduce phase differences of the encoded periodic patterns. The

storage capacity of this associative memory neural network is enhanced with an adequate level of

asymmetry in synapse connections. To understand the properties of these nonequilibrium retrieval states

of the neural network, we carry out an analysis based on a path integral method. The relation of a dynamic

crosstalk term to time-persistent oscillation of a correlation function well explains the enhancement of the

storage capacity in spite of our approximation on nonpersistent terms. We investigate the accuracy of this

approximation further by detailed comparison with numerical simulations.
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Measurements of neural activity in a rat’s brain have
offered a clue to memory representation in the real nervous
system [1–3]. These studies have shown that a single
neural circuit is capable of storing a number of memories,
and the mechanism of this multiple-pattern learning has
been explained by multiple attractors in associative mem-
ory neural network models [4–16]. It is then an interesting
problem to clarify how many memories or attractors can be
memorized in one neural network. The upper limit of a
number of attractors, namely, storage capacity, has been
clarified in the case of the Hopfield model since its sym-
metric synapse connections allow for the replica calcula-
tion based on an energy function [4,5].

The replica method is unavailable with asymmetric syn-
apse connections. Nevertheless, improvement of network
performance due to asymmetric connections has also at-
tracted the attention of researchers [6–8]. It is noticeable
that asymmetric neural networks are vital for learning
about spatiotemporal neural activities. Spatiotemporal
learning is also interesting from the biological viewpoint
since certain memories in the rat Hippocampus are repre-
sented by spatiotemporal neural activities [1,2].

In the present study, we investigate storage capacity of
spatiotemporal associative memory in which periodic spa-
tiotemporal patterns are encoded with asymmetric synapse
connections due to the learning rule inspired by the spike-
timing-dependent synaptic plasticity [12]. During pattern
retrieval of this model, spin neurons exhibit periodic oscil-
lation, reproducing phase differences of the encoded peri-
odic patterns. To investigate this nonequilibrium nature of
the asymmetric neural network, we analyze the system by
path integral methods [8–11,17–21]. Path integral methods
can deal with the asymmetric Ising-spin system, such as
the asymmetrically modified Sherrington-Kirkpatrick
model [10,21]. Using this powerful technique, we evaluate
time-persistent oscillation of a correlation function and
find the emergence of a dynamic crosstalk term in mean-

field equations. Solving these equations, we clarify en-
hancement of the storage capacity in the region with
asymmetric synapse connections.
We define Ising-spin neural network�iði ¼ 1; . . . ; NÞ by

the single-spin-flip dynamics with transition rate wð�i !
��iÞ ¼ ð1=2Þ½1� tanhð��ihiÞ�, where hi ¼

P
jJij�j

represents local field and � ¼ 1=T represents degree of
stochasticity. Periodic spatiotemporal patterns to be en-
coded are defined by

��
i ðtÞ ¼ cosðt���

i Þ; � ¼ 1; . . . ; P; (1)

where �
�
i are chosen randomly from the uniform distribu-

tion within ½0; 2�Þ. Our previous study [12] has shown that
learning of phases of these periodic patterns is attained by
the learning rule of the form

Jij ¼ ð1=NÞ XP
�¼1

cosð��
i ���

j þ ’Þ; i � j: (2)

This rule gives asymmetric synapses connections Jij � Jji,

except for the case ’ ¼ 0 (’ ¼ � is meaningless for
pattern retrieval). Fixing Jii ¼ 0, we make use of Eq. (2)
to encode an extensive number of patterns P ¼ �N. As
shown in Fig. 1(a), asymmetric connections with ’ � 0
bring about oscillation of spin neurons, in which the en-
coded phases are reproduced in the same manner as the
previous study [12]. We define overlaps as

M�ðtÞ ¼ ð1=NÞX
i

ei�
�
i �iðtÞ; � ¼ 1; . . . ; P: (3)

Owing to the spin oscillation reflecting the encoded phases
�1

i , the overlap for the retrieved pattern shows oscillation
M1ðtÞ ¼ jM1jei!t, where amplitude jM1j and retrieval fre-
quency ! are constant in time.
To overview storage capacity of the network, we plot

results of numerical simulations on the ’� � plain in
Fig. 2, where high overlap value indicated by white color
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represents success in pattern retrieval. The interesting fea-
ture of these phase diagrams is the appearance of the two
peaks in the phase boundary with nonzero values of ’. It
turns out that asymmetric connections with nonzero ’
enhance the storage capacity of the neural networks.

To understand this enhancement of the storage capacity,
we begin with analyzing the energy function in the case of
symmetric connections ’ ¼ 0, and obtain the replica-

symmetric solution jMj ¼ hRDz cos� tanh�ðjMj cos�þffiffiffiffiffiffi
�r

p
zÞi�, q ¼ hRDztanh2�ðjMj cos�þ ffiffiffiffiffiffi

�r
p

zÞi�, and

r ¼ q=½2ð1� �=2þ �q=2Þ2�, where h. . .i� represents

the average on �. Then, to find the generalized solution
for’ � 0, we analyze the master equation of the system by
path integral methods [8–11,17–21], and obtain a single-
body dynamics with an effective local field

hðtÞ ¼ Reðeið�þ’ÞM�ðtÞÞþ ffiffiffiffi
�

p
ZðtÞ

þ �
Z t

�1
Sðt; t0Þ�ðt0Þdt0; (4)

whereM�ðtÞ represents the complex conjugate of the over-
lap. The correlation of the crosstalk term Rðt; t0Þ ¼
hZðtÞZðt0Þi and the function Sðt; t0Þ satisfy the relations

Rðt;t0Þ¼X1
l¼0

X1
m¼0

cos½ðl�mÞ’�
��

G

2

�
lC

2

�
Gy

2

�
m
�
ðt;t0Þ; (5)

Sðt; t0Þ ¼ X1
l¼1

cos½ðlþ 1Þ’�
�
G

2

�
lðt; t0Þ; (6)

where Cðt; t0Þ is a correlation function, Gðt; t0Þ is a re-
sponse function, and Gyðt; t0Þ represents Gðt0; tÞ. Note
that a product among order parameters is defined such
that ðGCÞðt; t0Þ ¼ R1

�1 Gðt; t00ÞCðt00; t0Þdt00.
To find the self-consistent solutions on Rðt; t0Þ, Sðt; t0Þ,

Cðt; t0Þ, and Gðt; t0Þ for the retrieval state MðtÞ ¼ jMjei!t,
we follow the previous studies and decompose the
functions into persistent terms and nonpersistent

terms: Rðt; t0Þ ¼ rðt� t0Þ þ ~Rðt� t0Þ, Sðt; t0Þ ¼ ~Sðt� t0Þ,
Cðt; t0Þ ¼ cðt� t0Þ þ ~Cðt� t0Þ, and Gðt; t0Þ ¼ ~Gðt� t0Þ,
where we assume rðtÞ ¼ rð�tÞ, cðtÞ ¼ cð�tÞ, and

limt!�1 ~RðtÞ, ~SðtÞ, ~CðtÞ, ~GðtÞ ¼ 0. This decomposition
makes the analysis easy especially when the system is in
the equilibrium state with ’ ¼ 0. In this case, rðtÞ and cðtÞ
are independent of time [i.e., rðtÞ ¼ r and cðtÞ ¼ c, where
c is equivalent to q in the replica-symmetric solution].

Moreover, the contribution from ~RðtÞ, ~SðtÞ, and ~CðtÞ can
be safely neglected through the fluctuation-dissipation

theorem (FDT). In fact, substitution of ~RðtÞ ¼ ~SðtÞ ¼
~CðtÞ ¼ 0 successfully recovers the previous-mentioned
replica-symmetric solution.
Our present problem with ’ � 0 is, however, more

complicated than the equilibrium case with ’ ¼ 0. One
difficulty comes from the break of the FDT, which prevents

legitimate neglect of ~RðtÞ, ~SðtÞ, and ~CðtÞ. Another difficulty
is the periodic oscillation of Ising spins, which gives a
periodic persistent term cðtÞ in the correlation functionCðtÞ
as shown in Fig. 1(b). The rigorous treatment of these
problems seems difficult. The contribution of the nonper-
sistent terms are, however, expected to be small at least
with small j’j. In the following, we thus approximately

neglect nonpersistent terms ~RðtÞ, ~SðtÞ, and ~CðtÞ even with
’ � 0, and carry out analysis of the oscillatory persistent
term cðtÞ. With this approximation, the local field (4) is
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FIG. 2. Absolute values of overlaps jMj in numerical simula-
tions are plotted on the ’� � plain both for (a) T ¼ 0:1 and
(b) T ¼ 0:2. White (black) color indicates high (low) absolute
overlap in stationary state. For each grid, we conduct one
numerical simulation, using N ¼ 10000.
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FIG. 1. (a) Periodic oscillations of spin neurons during the
retrieval of pattern 1 are plotted for five neurons (i ¼ 1; . . . ; 5).
The dashed line indicates states of neurons, while the thick and
the thin lines represent local field and crosstalk term [i.e., hiðtÞ �
Reðeið�iþ’ÞM�ðtÞÞ], respectively. The phase differences of the
neural oscillations reflect the encoded phases �1

i . The simulation
is carried out under the condition ’ ¼ �0:1�, T ¼ 0:1, � ¼
0:01, and N ¼ 10 000. The retrieval of pattern 1 is evoked by the
initial condition �ið0Þ ¼ H½�1

i ð0Þ� with the Heaviside function

HðxÞ. (b) The correlation function CðtÞ obtained from the sta-
tionary state in the simulation in (a).
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rewritten in the form

hðtÞ ¼ jMj cosð�þ ’�!tÞ þ ffiffiffiffi
�

p
zðtÞ; (7)

where the correlation of the crosstalk term is given by
hzðtÞzðt0Þi ¼ rðt� t0Þ. The function rðtÞ, which is an even
periodic function as cðtÞ, is rewritten as

rðtÞ ¼ X1
l¼0

rl cosðl!tÞ: (8)

We here focus on solutions with rl � 0ðl ¼ 0; 1; 2; . . .Þ.
Then, zðtÞ is written as

zðtÞ ¼ X1
l¼0

ffiffiffiffi
rl

p ½xl cosðl!tÞ þ yl sinðl!tÞ�; (9)

where independent stochastic variables xl and yl obey a
normal Gaussian distribution. From Eq. (5), we obtain

rl ¼ cl
2ð1þ �0lÞ

�
1

1þ j ~Glj2=4� j ~Glj cosð	l þ ’Þ
þ 1

1þ j ~Glj2=4� j ~Glj cosð	l � ’Þ
�
; (10)

where cl ¼ ½1=ð2�=!Þ�R2�=!
0 e�il!tcðtÞdt, ~Gl ¼R1

�1 e�il!t ~GðtÞdt, and phase 	l is defined by ~Gl ¼
j ~Gljei	l . Note that cl gives cðtÞ ¼

P1
l¼�1 cle

il!t.

The problem is now reduced into a calculation of order
parameters jMj, rl, cl, gl, and retrieval frequency !. From
the single-body dynamics with Eq. (7), we obtain

dM=dt ¼ �Mþ hei� tanh�½jMj cosð�þ ’�!tÞ
þ ffiffiffiffi

�
p

zðtÞ�i�;z; (11)

where h. . .i� is the average on � and h. . .iz is the average
on zðtÞ (i.e., Gaussian distributions on xl and yl.)
Substituting M ¼ jMjei!t, we have

jMj ¼ cos’hcosð�Þ tanh�½jMj cos�þ ffiffiffiffi
�

p
zð0Þ�i�;z (12)

and

! ¼ � tan’: (13)

It is notable that within the present approximation, the
retrieval frequency ! is given by the simple function of

’. ~Gl and ~cl satisfy the similar relations

~G l ¼ 1

1þ il!
h�tanh0�½jMj cos�þ ffiffiffiffi

�
p

zð0Þ�i�;z; (14)

cl ¼ 1

1þ ðl!Þ2 hjhe
il� tanh�½jMj cos�

þ ffiffiffiffi
�

p
zð�=!Þ�i�j2iz: (15)

The self-consistent solution of Eqs. (9), (10), and (12)–(15)
determines all the order parameters. One can show that this
solution again recovers the replica-symmetric solution in
the limit ’ ! 0.

Finding a numerical solution of the above equations
requires another approximation. We first restrict the order
of the Fourier coefficients up to n [i.e., we only calculate rl,

cl, and ~Glðl ¼ 0; . . . ; nÞ]. Then, we can readily carry out
the average h. . .iz in Eqs. (12) and (14) since they can be
safely replaced by the average on a single Gaussian with
variance

P
n
l¼0 rl. This replacement is, however, inappli-

cable to Eq. (15). To avoid the high-dimensional integrals
on xl and yl ðl ¼ 0; . . . ; nÞ in Eq. (15), we note hxlxmiz ¼
hylymiz ¼ �lm and hxlymiz ¼ 0 and carry out an approxi-
mation by the second order Taylor expansion:

cl � 1

1þ ðl!Þ2 ½jI
0
l ð1Þj2 þ

Xn
m¼0

ðjI1l ð�
ffiffiffiffiffiffiffiffiffi
�rm

p
cosm�Þj2

þ Re½I2l ð��2rmcos
2m�ÞI0�l ð1Þ�

þ jI1l ð�
ffiffiffiffiffiffiffiffiffi
�rm

p
sinm�Þj2

þ Re½I2l ð��2rmsin
2m�ÞI0�l ð1Þ�Þ�;

with Ipl ðfÞ ¼ heil�tanhðpÞð�jMj cos�ÞðfÞi�, where

tanhðpÞðxÞ represents its pth derivation. Although we also
examined the 4th order expansion, its improvement on the
precision was small in spite of large computational costs.
Figure 3 shows the phase diagrams obtained from the

above analysis. The two peaks of storage capacity appear
in the both phase diagrams, consistently with the simula-
tions in Fig. 2. The results show the high agreement espe-
cially with ’ ¼ 0, where our solution is equivalent to the
replica-symmetric solution. The agreement is perfect also
in the low loading limit � ¼ 0. Both in the analysis and the
simulations, overlaps show discontinuous change at critical
points, except for the case of � ¼ 0.
In the region with large j’j and large �, we, however,

find disagreement between the theory and the numerical
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FIG. 3. ’� � phase diagrams obtained from the analysis is
plotted both for (a) T ¼ 0:1 and (b) T ¼ 0:2. R represents
retrieval phase, in which the analysis yields a retrieval solution
with jMj> 0. In the analysis, order parameters rl, cl, and ~Gl are
calculated up to the 7th order (n ¼ 7) with the use of the Taylor
expansion on cl (see text).
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simulations. In fact, the phase diagrams in Fig. 3 look
larger than those in Fig. 2. To illustrate the details of this
disagreement, we plot jMj as function of ’ in Fig. 4. The
deviation between the theory and the simulations increases
as j’j increases, and ends up with the phase transition in
the simulations before the analytically derived critical
points. The size of the overlap in the simulations tends to
take a smaller value than that in the analysis, implying the
possible presence of additional noisy components in the
effective local field. This is considered to be the outcome

of nonpersistent terms ~RðtÞ and ~SðtÞ, which are neglected in
the present analysis.

We have studied Ising-spin neural networks in which
periodic neural activities (1) are memorized with the learn-
ing rule (2). During pattern retrieval described in Fig. 1(a),
the spin neurons exhibit periodic oscillation with encoded
phase shifts �1

i , yielding overlap oscillation M1ðtÞ ¼
jM1jei!t. To investigate this dynamic pattern retrieval we
have carried out path integral analysis. Both in the analysis
(Fig. 3) and in the numerical simulations (Fig. 2), we have
found the enhancement of the storage capacity due to
asymmetric synapse connections. However, the disagree-
ment between the analysis and the simulations has also
been confirmed in the region with the large j’j and the
large �, as described in Fig. 4. This has seemed to be the
effect of nonpersistent terms in Rðt; t0Þ and Sðt; t0Þ, which
are approximately neglected in the present analysis.

Besides the deviation of overlaps, we find deviation of
the retrieval frequency ! when j’j is small (data not
shown). This indicates the influence of the nonpersistent
terms more clearly since Eq. (13) is not suffered from the
Taylor expansion on cl. Further improvement of the analy-
sis requires more general consideration on Rðt; t0Þ and

Sðt; t0Þ. One way to ease the problem is the adoption of
different network models, as has been demonstrated in a
special sort of soft-spin networks [20]. The learning rule
resembling Eq. (2) is assumed in oscillator neural networks
[14–16]. Attractors of the oscillator networks are, however,
effectively fixed-point type, and mean-field equations with
a static Gaussian term readily give a good approximation
of the storage capacity [16]. These mean-field equations
are obtained from signal-to-noise analysis based on an
expansion on Thouless-Anderson-Palmer (TAP)-like equa-
tion. To carry out signal-to-noise analysis for dynamic
attractors as in the present study, one might need to con-
sider an expansion by a response function. [Such expansion
indeed gives Rðt; t0Þ and Sðt; t0Þ for deterministic analog
neural networks.] The spatiotemporal learning is not spe-
cific to periodic patterns, but available also in nonperiodic
patterns [12]. Studying local field oscillation with non-
periodic patterns would also be an interesting problem.
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FIG. 4. Overlaps jMj obtained from the analysis with � ¼
0:01 are plotted together with numerical simulations both for
(a) T ¼ 0:1 and (b) T ¼ 0:2. Ten simulations are conducted for
each value of ’. Overlaps generally show discontinuous change
at critical points, except for the case of � ¼ 0.
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