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Magnetic order in graphene-related structures can arise from size effects or from topological frus-

tration. We introduce a rigorous classification scheme for the types of finite graphene structures (nano-

flakes) which lead to large net spin or to antiferromagnetic coupling between groups of electron spins.

Based on this scheme, we propose specific examples of structures that can serve as the fundamental (NOR

and NAND) logic gates for the design of high-density ultrafast spintronic devices. We demonstrate, using

ab initio electronic structure calculations, that these gates can in principle operate at room temperature

with very low and correctable error rates.
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Magnetism in solids is typically associated with the
presence of transition metal elements with d electrons.
Experimental evidence has recently shown that magnetism
can also arise in solids composed of elements with only sp
electrons, as, for example, in bulk proton irradiated graph-
ite [1]. Theoretical studies addressing the issue of magne-
tism in carbon-based materials have focused on point
defects [2–4] and reduced dimensionality [5–10]. These
works have shown that magnetism can arise in various
situations, for example, the antiferromagnetic order across
the edges of zigzag-edged graphene nanoribbons [5] and
the large net spin in zigzag-edged triangular graphene
nanoflakes [7–9]. On the other hand, magnetism from sp
electrons is not new in organic chemistry: high-spin states
have been observed in synthesized organic molecules, for
example, conjugated polyradicals [11] and triangulene
derivatives [12], where all conjugated � electrons cannot
be paired simultaneously. At present, it is not yet clear if
the magnetic properties of irradiated bulk graphite and
those of high-spin organic molecules have the same origin.
Understanding of the magnetic order and its origin in
various finite graphene structures is of fundamental impor-
tance as well as of practical interest for application in
spintronics [13] where carbon-based materials have re-
cently demonstrated their potential [14].

In this Letter, we show that a distinct origin of magne-
tism in finite graphene structures is topological frustration
of � bonds, which is a generalization of the simple count-
ing rule that governs magnetic order in organic molecules.
We use the notion of this topological frustration to derive a
rigorous classification scheme for arbitrarily shaped gra-
phene nanoflakes, depending on whether only one or both
sublattices of the graphitic structure are frustrated. From
this classification scheme we identify which nanoscale
structures can give rise to a strong antiferromangetic
(AFM) coupling and propose a specific example of a
structure which can serve as the fundamental (NOR and
NAND) spin logic gate. Finally, we employ first-principles

electronic structure calculations to show that this type of
gate can operate at room temperature, an important pre-
requisite for the design of realistic, high-density ultrafast
spintronic devices based on graphene.
A graphene nanoflake (GNF) is an arbitrarily shaped

finite graphene fragment consisting of hexagonal rings and
bounded by a single (non-self-intersecting) topological
circuit, where all in-plane dangling � bonds at the edge
are assumed passivated. We start the general classification
of GNFs with the widely used pz band Hubbard model,
where magnetic correlations are described through the
Hamiltonian

H ¼ �t
X

hiji;�
cyi�cj� þU

X

i

ni"ni#: (1)

In the first term, the tight-binding part, the operators ci�
(cyi�) annihilate (create) an electron at site i with spin
� ¼ "; # and t is the hopping integral between the nearest
neighbor sites i and j. The honeycomb lattice of graphene
is bipartite, that is, any pair of bonded nearest neighbor
carbon atoms consists of one atom from each of the two
interpenetrating sublattices, commonly denoted as A and B
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FIG. 1 (color online). (a),(b) Class I GNFs, where nullity is
equal to sublattice imbalance, � ¼ jNA � NBj. (c) Class II bow-
tie-shaped GNF with zero sublattice imbalance but a nullity of
two, specifically, NA ¼ NB ¼ 19, � ¼ 20. The definition of �
requires switching of sublattice across the dashed line. All
colored sites correspond to a maximum set of nonadjacent sites.
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(Fig. 1). The second term of the Hamiltonian describes
electron-electron interactions via the on-site Coulomb re-

pulsion U with ni� ¼ cyi�ci� the number operator. This

interaction may trigger an instability in the low-energy
electronic states and produce spin-polarized states to mini-
mize the total energy. Zero-energy (nonbonding) states in a
half-filled � subband are particularly prone to become
polarized for U > 0.

The occurrence of zero-energy eigenstates in the tight-
binding Hamiltonian for a GNF can be accounted for by a
theorem on hexagonal graphs [15]. The number of such
states, called ‘‘nullity’’ (�), is determined by the topology
of the GNF according to the equation� ¼ �� �, where�
and � are the maximum numbers of nonadjacent vertices
and edges, respectively. The latter is also called the maxi-
mum matching of the GNF graph and satisfies the relations
� ¼ � ¼ �, where � and � are the numbers of positive and
negative eigenstates, respectively. The sum �þ � equals
to N, the total number of carbon atoms in the GNF. When
� ¼ 0,� ¼ N=2 and all carbon atoms can be connected by
a set of nonadjacent pairwise bonds, which is referred to as
‘‘perfect matching’’ indicating a perfect pairing of all pz

orbitals. Otherwise, � ¼ �� � ¼ N � 2�> 0, which is
the number of sites that are left out by the best possible
matching. The inability to simultaneously pair all pz orbi-
tals is entirely attributed to the topology of the GNF, and
therefore can be called topological frustration.

In general, GNFs can be classified into two classes
according to whether one or both sublattices are topologi-
cally frustrated. In class I, at most one of the sublattices is
frustrated, which is characterized by � ¼ minfNA;NBg;
that is, the maximum matching covers all sites of at least
one sublattice. This class includes all highly symmetric
forms of GNFs as we proved previously [9]. The nullity
for this class is simply � ¼ jNA � NBj, as illustrated in
Figs. 1(a) and 1(b). Balanced sublattices (NA ¼ NB) means
zero nullity. In class II, both sublattices are frustrated,
characterized by �<minfNA;NBg (note � �
minfNA;NBg), which means �> jNA � NBj. As a result,
the nullity can be finite even for GNFs with balanced
sublattices. An example is shown in Fig. 1(c), where the
nullity is � ¼ 2 even though NA ¼ NB.

Although graph theory is all that is required to predict
the number of singly occupied orbitals, it is not clear how
the electron spins in these orbitals are aligned.
Complementary information comes from the Lieb theorem
[16], which determines the total spin but not the number of
singly occupied orbitals. The Lieb theorem was proved for
any even-numbered bipartite system, where the ground
state has a total magnetic moment S ¼ jNA � NBj=2.
Therefore, for class I GNFs, S ¼ jNA � NBj=2 ¼ �=2,
that is, all spins in singly occupied orbitals align parallel
to each other, consistent with Hund’s rule. This was con-
firmed experimentally [12] and by first-principles calcula-
tions [8,9]. For class II GNFs, S ¼ jNA � NBj=2<�=2,
indicating the existence of AFM order, and Hund’s rule

breaks down. Specifically, for the bow-tie-shaped GNF
shown in Fig. 1(c), the magnetic moments of the left and
right triangle must be AFM coupled to satisfy the require-
ment S ¼ 0. This is also consistent with the fact that
magnetic moments are localized in the two sublattices of
graphene favoring AFM coupling [3,17].
Besides topological frustration, AFM coupling can also

be induced by the polarization of the low-energy states that
approach the Fermi level as the system size increases. This
is a distinctly different origin of magnetism, for two rea-
sons: first, it cannot give rise to net spin; second, the energy
of the noninteracting eigenstate is not strictly at the Fermi
level, except in infinite systems, and magnetic order ap-
pears only if the interaction energy U is above a positive
threshold or, equivalently, if the system is above a critical
size. Examples of this mechanism are graphene nanorib-
bons [18] and hexagonal graphene nanoflakes [8].
We next focus on the magnetic coupling induced by

topological frustration in class II GNFs and use the bow-
tie structure of Fig. 1(c) as the simplest representatives.
Such structures have a low-spin ground state, involving
spins spatially segregated and AFM coupled. This open-
shell, low-spin feature is not only fundamentally interest-
ing but also may enable practically accessible logic opera-
tions. For instance, the simple bow-tie structure is a natural
NOT gate because flipping the input spins on one side of the

bow tie requires the output spins on the other side to flip as
well since the spins on the two sides must point in opposite
directions as long as the AFM order is the ground state.
Practically, various means may be used to flip the input
spin, including polarized light, local magnetic fields, or
direct injection of polarized electrons through magnetic
materials. Among those, spin injection [19] appears the
most promising, especially when considering the natural
integration of GNFs with graphene nanoribbons which
have been predicted to exhibit rich spintronic proper-
ties including half-metallicity [5,9]. The barrier for flipping
the output spin is expected to be extremely low (�kBT)
due to the weak spin-orbit coupling in carbon materials [6],
which is a prerequisite for operation with low-energy
consumption. In order to achieve both ultrafast switch-
ing and robust operation at reasonable temperatures, it is
also important to have the magnetic coupling 2J ¼ EFM �
EAFM, the energy difference between the ferromagnetic
and antiferromagnetic configurations, be greater than
18 meV, the minimum energy dissipation [20] kTB ln2
evaluated at 300 K. In principle, picosecond flipping of
electron spins can be achieved with an energy splitting J >
�@=10�12 sec ’ 2 meV.
In order to establish whether or not the above conditions

can be met, we turn to first-principles electronic structure
methods to investigate the energetics of magnetic cou-
pling in detail. Calculations were performed using spin-
polarized density functional theory as implemented in the
SIESTA code [21]. The generalized gradient approximation

exchange-correlation functional [22] was employed to-
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gether with a double � plus polarization basis set, norm-
conserving pseudopotentials [23], and a mesh cutoff of
200 Ry. The different spin configurations were obtained
by means of providing appropriate initial guess electron
spin densities [24,25]. The electronic structure of a repre-
sentative bow-tie GNF is shown in Fig. 2. The nullity of the
corresponding graph, � ¼ 4, manifests itself as four singly
occupied orbitals. Within the spin-polarized formalism,
when spin-spatial symmetry breaking is allowed these
four states are split, as shown in Fig. 2(a). The wave
functions clearly illustrate the open-shell singlet nature of
the system: electrons are AFM coupled but not paired in
the sense that they are spatially segregated, in agreement
with previous calculations [26] on non-Kekuléan mole-
cules. The spin coupling here is 2J ¼ 45 meV, well be-
yond the above mentioned thermodynamic threshold.

The coupling strength in a bow-tie GNF can be further
engineered by optimizing its geometry. To explore possi-
bilities, we calculated bow-tie nanoflakes of different tri-
angle size n and junction width m (both measured in units
of the graphene lattice constant, a0 ¼ 0:25 nm) for both
symmetric and asymmetric geometries, shown in Fig. 3. In
either case, there are n�m� 1 nonbonding states on each
triangularly shaped side of the bow-tie GNFs. The calcu-
lated coupling magnitude 2J converges quickly with in-
creasing n after reaching a maximum value Fig. 3(a). The
leveling off is attributed to the size effect which diminishes
the minimum energy splitting. Interestingly, for a specific
asymmetric m ¼ 2 configuration, the interaction strengths
are as large as 2J ¼ 180 meV. In comparison, the AFM
coupling of quantum dots [27] and transition metal atoms
[28] suffer from weak maximum coupling strength, about 1
and 6 meV, respectively, limiting their operation to very
low temperatures. With a coupling of 180 meV, a GNF-
based spin gate may operate at room temperature with an

error rate of p ¼ e�2J=kTB ¼ 0:001, which can be handled
by error correction schemes.
To further illustrate the concept of using class II GNFs

for spin logic processing, we explore a tri-bow-tie GNF in
which the central triangle is connected to three other
surrounding triangles through its vertices, as shown in
Fig. 4(a). From graph theory arguments, we expect the
number of unpaired spins in the central region D to be
nD �mAD �mBD �mCD � 1, where mXY (X; Y ¼
A; B;C;D) are the widths of the junctions; the peripheral
triangles accommodate nA �mAD � 1 unpaired spins. The
unpaired spins in the central region now depend on the
competition of the spins of all the three peripheral regions:
they tend to be AFM coupled to the majority spins of the
peripheral regions so that the total energy is lowered. We
can therefore assign the total spins of two of those periph-
eral regions as operands A and B and the third as a
programming bit C; the spin in the central region D is
the output. With the spin-up state representing 1 and the
spin-down state 0, the above logic is written as

D ¼ ðA \ BÞ [ ðB \ CÞ [ ðC \ AÞ
¼ ðA \ BÞ [ ððA [ BÞ \ CÞ:

IfC is 1, the logic reduces toD ¼ A [ B, a NOR gate; ifC is

0, D ¼ A \ B, a NAND gate: these are the two fundamental
gates in Boolean logic, from either one of which all other
gates can be constructed. Therefore, the above scheme in
principle provides an efficient design, with the spin degree
of freedom employed to satisfy in the classic regime all
digital logic operations.
Undoubtedly, various engineering issues will have to be

addressed before the actual operation of such a device. For
instance, the design of the device ground state by coupling
to peripheral leads, fan-out, and control of unidirectional
logic flow are all open issues. Fabrication of the bow-tie
structure is another challenge, but recent experiments dem-
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FIG. 2 (color online). (a) The spectrum of singly occupied
states of a bow-tie-shaped GNF populated by spin-up (1u and
2u) and spin-down (1d and 2d) electrons. (b) Isodensity surface
of the total spin distribution showing opposite spins localized at
opposite sides. (c) Wave functions of the four singly occupied
states.
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FIG. 3 (color online). (a) Dependence of the spin coupling 2J
on the GNF bow-tie geometry for (b) symmetric and
(c) asymmetric configurations of various triangular sizes n and
junction widths m. The dashed horizontal line marks the mini-
mum coupling required for room temperature operation.
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onstrated that graphene devices only a few nanometers in
size can be sculpted by electron beam or scanning probes
and are quite stable [29,30]. Meanwhile, we point out that
the demands on fabrication are significantly alleviated by
the intrinsic defect tolerability of the spin GNF devices: at
least n� 1 out of ðnþ 2Þ2 � 3 carbon atoms can be re-
moved (excluding those atoms at the junction to which the
device function is highly sensitive) from the dominant
sublattice in an individual triangle of size n before the
nonbonding states are eliminated and the local magnetic
moment quenched. These considerations indicate that the
devices based on the proposed design are not beyond the
reach of modern nanoscale fabrication methods.
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FIG. 4 (color online). (a) Reconfigurable spin logic NOR and
NAND gate based on of a tri-bow-tie GNF structure with nA ¼
nB ¼ nC ¼ 4, nD ¼ 6, m ¼ 1 (A, B, and D are two inputs and
one output, respectively, and C is the programming bit). (b) A
scheme of the localized spins and the couplings (2JXY ¼
34 meV). (c) Two distinct spin configurations corresponding to
1110 and 0110 for the ABCD spins, respectively. (d) The truth
table of the programmable logic gate and the total energy Etot of
the operation configuration. D0 and E0

tot are the error output and
the corresponding energy (E0

tot >Etot).
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