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The surface states of a topological insulator are described by an emergent relativistic massless Dirac

equation in 2þ 1 dimensions. In contrast with graphene, there is an odd number of Dirac points, and the

electron spin is directly coupled to the momentum. We show that a magnetic impurity opens up a local gap

and suppresses the local density of states. Furthermore, the Dirac electronic states mediate an RKKY

interaction among the magnetic impurities which is always ferromagnetic, whenever the chemical

potential lies near the Dirac point. Through this exchange mechanism, magnetic atoms uniformly

deposited on the surface of a topological insulator could naturally form a ferromagnetically ordered

film. These effects can be directly measured in STM experiments. We also study the case of quenched

disorder through a renormalization group analysis.
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Following the recent theoretical prediction and the ex-
perimental observation of the quantum spin Hall insulator
state in two dimensions [1–4], the concept of a topological
insulator (TI) in three dimensions has attracted a lot of
interest [5–8]. The electronic excitation spectrum of a time
reversal (TR) invariant TI is fully gapped in the bulk, but
there are gapless surface states described by the (2þ 1)-
dimensional [ð2þ 1ÞD] relativistic Dirac equation with an
odd number of Dirac points. This property makes the
surface system an extremely unusual ð2þ 1ÞD system,
just like the ð1þ 1ÞD ‘‘helical’’ edge states of quantum
spin Hall insulators [9,10]. In fact, one can prove a general
no-go theorem, which states that a two-dimensional TR
invariant lattice model cannot have an odd number of Dirac
points [9]. For example, the familiar graphene model on a
honeycomb lattice has four Dirac points [11,12]. The
surface states of a TI evade this no-go theorem since they
describe the boundary of a three-dimensional lattice
model, and a pair of Dirac points can be separated onto
the two opposite surfaces. The Dirac points of a TI are thus
stable and robust. They can not be destroyed by any TR
invariant perturbations. In contrast, since the Dirac points
of a two-dimensional lattice model occur in pairs, they can
be pairwise annihilated by small perturbations. For ex-
ample, a sublattice distortion in graphene can remove
Dirac points entirely.

Therefore, the surface states of a TI offer a unique plat-
form to investigate the physics of robust Dirac points. In
Refs. [8,13], it was pointed out that a TR breaking pertur-
bation on the surface is the most natural way to reveal the
topological properties of Dirac points. For this reason, we
investigate the effects of magnetic impurities on the sur-
face states of a TI. We consider the simplest case of a single
Dirac point, described by the low-energy effective

Hamiltonian

Ĥ0 ¼
X

k;�;�

c y
k�h��ðkÞc k�;

h��ðkÞ ¼ @vfðkx�x
�� þ ky�

y
��Þ;

(1)

where the z direction is perpendicular to the surface and vf

is the Fermi velocity. At first sight, this is exactly the
2D Dirac Hamiltonian at one nodal point of graphene
which has been used successfully to describe its low-
energy physics [11,12]. However, there is one important
difference between these two cases. For graphene, the two
components of the Dirac Hamiltonian describe the two
sublattices or pseudospin degrees of freedom, while in
the case of a TI, the two components describe the real
electron spin, and are related to each other by TR.
Therefore, we expect the coupling between magnetic im-
purities and electron spin to take the form

Ĥ ex ¼ Ĥz
ex þ Ĥk

ex

¼ X

r

JzszðrÞSzðrÞ þ JkðsxSx þ sySyÞðrÞ; (2)

where SiðrÞ is the spin of a magnetic impurity located at r,
siðrÞ ¼ c yðrÞ�ic ðrÞ is the spin of the surface electrons
and Jz, Jk are the coupling parameters. The Hamiltonians

(1) and (2) together describe the problem of magnetic
impurities on the surface of a TI, which is the starting
point of this Letter. Recently, Bi2Se3, Bi2Te3, and Sb2Te3
have been predicted to be topological insulators with a
single Dirac surface state [14,15]. Taking Sb2Te3 as an
example, which can be doped with vanadium as magnetic
impurities [16,17], the effective surface model (1) can be

derived microscopically, with the Fermi velocity @vf �
3:7 eV � �A. According to the bulk exchange coupling be-
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tween electrons and magnetic impurities [16], the surface
exchange parameters Jz and Jk are estimated of order 0.1–

0.5 eV, which depends on the overlap between the surface
states and the magnetic impurities. Furthermore, the Fermi
level lies close to the Dirac point.

Single magnetic impurity.—Let us start by studying the
effect of a single magnetic impurity on the surface states.
For simplicity, we treat the impurity as a classical spin
locating at the origin. Under such a mean-field approxima-
tion, the exchange Hamiltonian is written as

Ĥ ex ¼
X

r

MiðrÞsiðrÞ; i ¼ x; y; z: (3)

Here we study the case with the impurity spin polarized in
the z direction (Mx ¼ My ¼ 0) and take a square well

regularization for the finite range exchange interaction
with the form MzðrÞ ¼ M0�ðr0 � rÞ where �ðr0 � rÞ is
the step function andM0 ¼ JzhSzi. r0 determines the range
of the exchange interaction. This problem has azimuthal
symmetry and can be solved analytically with Bessel
functions [18]. From the analytic solution we find that
the wave function for r < r0 decays for energies jEj<
jM0j, and oscillates for energies jEj> jM0j. To study
observable consequences of this impurity effect, we calcu-
late the local density of states (LDOS) defined by
�0ðr; EÞ ¼ � 1

2�=fTr½GRðr; r; EÞ�g, where GRðr; r0; EÞ is

the retarded single-particle Green’s function. As shown
in Figs. 1(a) and 1(b), the LDOS is suppressed in the

energy range jEj< jM0j and spatial range r < r0. For r >
r0 the LDOS converges quickly to the impurity-free value
jEj

2�@2v2
f

. Such a LDOS gap induced by a magnetic impurity

can be observed by STM experiments, and define a sharp
criterion to distinguish the TI surface from other two-
dimensional systems with an even number of Dirac cones,
such as graphene. In graphene, the two components of the
Dirac Hamiltonian represent the pseudospin degree of
freedom of the two sublattices, which do not couple to
magnetic impurities directly. Therefore, no suppression of
LDOS will be observed [19].
Another interesting physical quantity is the spin LDOS,

defined by �iðr; EÞ ¼ � 1
2�=fTr½GRðr; r; EÞ�i�g, i ¼ x, y,

z. Experimentally, the spin LDOS can be measured by the
recently developed spin-resolved STM technique [20].
Without the azimuthal symmetry in general the system
cannot be solved analytically anymore, we then adopt the
standard T-matrix formalism [21,22] to calculate the
Green’s function GRðr; r0; EÞ numerically with the ex-
change coupling in (3) regarded as a � function MiðrÞ ¼
JihSii�ðrÞ. The calculated distribution of the spin LDOS
�iðr; EÞ at a given energy is shown in Fig. 1(c) for the out-
of-plane and (d) for in-plane magnetization, respectively.
As seen from Fig. 1(c), the z-direction magnetization
induces not only a z-direction spin LDOS, but also an
in-plane spin LDOS. This is a direct consequence of the
spin-orbit coupling of surface states. In fact, the Dirac
Hamiltonian (1) can be regarded as an electron spin
coupled to a momentum-dependent effective magnetic
field Beff ¼ @vfk. As an electron propagates, its spin

processes around Beff . Since Beff is parallel to the propa-
gation direction of the electron, the electron spin always
precesses in a plane perpendicular to the direction of
propagation. For example, when an electron with spin
polarized in the z direction is moving towards the x direc-
tion, the spin is precessing in the yz plane. Consequently,
the spin LDOS vector �sðr; EÞ ¼ ð�x; �y; �zÞ is canted

towards the y direction when r is along the positive x
axis. A similar analysis can apply to other directions,
from which we can understand the spin LDOS distribution
in Fig. 1(c). For an in-plane impurity spin polarized in the y
direction shown in Fig. 1(d), the precession picture remains
valid. The spin LDOS pattern in Figs. 1(c) and 1(d) can
also be understood by symmetry. When the impurity spin is
polarized in the z direction, the system is invariant under
the rotations about z axis, and so is the spin LDOS. For an
in-plane impurity spin, rotation symmetry is broken, but
there is a discrete symmetry defined by a �-rotation along
the z axis combined with a TR transformation. Such a
residual symmetry is preserved in the pattern of Fig. 1(d).
Besides the patterns discussed above which are due to

spin precession, another important feature of the spin
LDOS is the longitudinal decay �i / 1=r2 when Fermi
energy is near the Dirac point. After integrating over en-
ergies below Fermi energy, the local spin polarization
hsðrÞi behaves as 1=r3. Such a 1=r3 power law is a direct

FIG. 1 (color online). (a) Charge local density of states
(LDOS) as a function of the distance r from the magnetic
impurity for electron energies E ¼ 30 meV (black line) and E ¼
70 meV (blue line). (b) Charge LDOS as a function of electron
energy E at positions r ¼ 0 (blue line) and r ¼ 20 nm (red line).
Here we assume a magnetic impurity strength M0 ¼ 50 meV
and a coupling range r0 ¼ 13 nm. The spin LDOS is plotted as a
function of position at E ¼ 10 meV for magnetization of the
magnetic impurity placed at the origin (0,0) in (c) the z direction
and (d) the y direction. Here the arrow indicates the in-plane spin
LDOS and the color shows the z direction spin LDOS.
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consequence of the fact that the spatial scaling dimension
of the spin density in the free Dirac fermion theory is 2.

Random magnetic impurities.—In the following we will
focus on the behavior of the system with randomly distrib-
uted magnetic impurities on the surface SðrÞ ¼ P

iSi�ðr�
RiÞ, where Ri are the positions of magnetic impurities. As
every magnetic impurity will open a local gap in its vicin-
ity, we may expect the system to be gapped everywhere, at
least in the mean-field level. However, this is not neces-
sarily true if the magnetization of magnetic impurities is
nonuniform. To see this, we consider again the mean-field
form of the exchange Hamiltonian (3) with a magnetiza-
tion domain wall along the y axis at x ¼ 0, which is given
by MzðxÞ> 0 (MzðxÞ< 0) for x > 0 (x < 0) and Mx ¼
My ¼ 0. Solving the Schrödinger equation directly on the

domain wall, we obtain gapless chiral fermion modes
along the domain wall with wave function c � ð1; iÞT�
exp½ikyy�

R
x
0
MzðxÞ
@vf

dx� and energy dispersion E ¼ @vfky.

Thus, this system is in fact not totally gapped but has
gapless modes. Compared with the fully gapped system,
the appearance of such gapless modes will cost more
energy. Therefore, heuristically we expect the system not
to favor any magnetic domain wall, which indicates that
magnetic impurities should be ferromagnetically coupled.

Keeping such a heuristic picture in mind, we now study
the coupling between two magnetic impurities microscopi-
cally. The itinerant electrons can mediate a spin inter-
action between two magnetic impurities, known as the
Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction.
Such a coupling can be obtained by integrating out the
fermions in the Hamiltonians (1) and (2), which results in

the form Ĥin ¼
P

i;j¼x;y;z�i;jðjr� r0jÞS1iðrÞS2jðr0Þ for any
two magnetic impurities S1 and S2. The coupling con-
stant �ijðRÞ is a function of R ¼ jr� r0j and can be
extracted from standard second-order perturbation
theory. For example, the z-direction coupling constant

has the form �zzðRÞ¼ J2z a
4
0

@vfR
3 ðFþðkFRÞþF�ðkFRÞÞ, where

kF is the Fermi momentum, a0 is the lattice constant

and Fþð�ÞðxFÞ¼
RxFðxcÞ
0

xdx
2�

R
xc
xF

x0dx0
2�

1
þð�Þx�x0 ½J0ðxÞJ0ðx0Þ�

ðþÞJ1ðxÞJ1ðx0Þ�. JnðxÞ is the Bessel function and xc ¼
kcR with kc a large momentum cutoff. The oscillating
part of the RKKY interaction is determined by Fþ þ F�
and the decaying part is proportional to 1=R3. Such de-
pendence is related to the 1=r3 dependence of the local
spin polarization induced by a single magnetic impurity
discussed earlier. Being a consequence of the Dirac
Hamiltonian, similar behavior has also been found in gra-
phene [23,24]. The novel property of Dirac fermions ap-
pears when the chemical potential is close to the Dirac
point. Since the oscillation period of the RKKY interaction
is determined by Fermi wavelength �F ¼ 1=kF, the oscil-
lation becomes weaker as kF ! 0, as shown in Fig. 2.
Eventually two magnetic impurities become ferromagneti-
cally coupled when �F is much larger than the average
distance between them.

Because of the ferromagnetic RKKY interaction dis-
cussed above, we expect ferromagnetic order to appear
among the magnetic atoms doped on the surface of a TI
when the chemical potential is near the Dirac point. At the

mean-field level, from the Ĥz
ex term in (2) we know that

Jzhszi acts as an effective magnetic field to magnetize the
magnetic impurities. At the same time, JzhSzi acts as the
effective magnetic field to polarize the electron spin. The
behavior of the critical temperature Tc for the ferromag-
netism can be extracted from a standard calculation [25],

and is given by kBTc ¼ S0ðS0þ1Þa2
0
y

6�@2v2
f

J2z ðEc � EfÞ, where Ec is

a cutoff energy, Ef is the Fermi energy, and S0 is the

saturation spin value of each magnetic impurity. Setting

y ¼ 0:2, a0 ¼ 4:25 �A, Ec ¼ 0:1 eV and S0 ¼ 1 for vana-
dium ions [16], Tc is estimated within the range 0.3–8 K.
Interestingly, such a ferromagnetically ordered surface
state also carries a half quantized Hall conductance �H ¼
�e2=2h, which can be understood as the parity anomaly of
massless Dirac fermions [26,27], and is a direct manifes-
tation of the nontrivial topology of the bulk system.
Quenched magnetic disorder.—We have calculated the

spin LDOS distribution around an isolated magnetic im-
purity, this distribution can be potentially modified by
interaction and quenched disorder. It is obvious that for
2D Dirac system, the short range interaction is an irrelevant
perturbation, and hence will not affect the long distance
spin LDOS distribution. We now consider the effects of
quenched disorder on the response to the isolated magnetic
impurity. In the current work, we only consider the random
XY moment, which couple to the Dirac fermion by the
following means: L0 ¼ �vfgBjðrÞc yðrÞ�jc ðrÞ, where

j ¼ x, y. A more comprehensive analysis of random po-
tentials will be published elsewhere. BjðrÞ represents

the random potential with correlation hBiðrÞBjðr0Þi ¼
�ij�

2ðr� r0Þ=ð2�Þ. g2 is proportional to the standard de-

viation of each component of random potential, which
from naive power counting is a marginal perturbation,
and hence it may modify the long distance response.
Since the random potential has long-range temporal corre-

FIG. 2 (color online). RKKY interaction versus the distance R
between two magnetic impurities. Fermi momentum kF is
chosen to be 0:5=a0 for the blue line, 1:0=a0 for the green line
and 1:5=a0 for the red line, where a0 is the lattice constant.
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lation but short-range spatial correlation, Lorentz invari-
ance of the bare Dirac Lagrangian is lost, and the Fermi
velocity vf flows under RG. In the calculation we assume

that the standard deviation �� g2 is small. After integrat-

ing out degrees of freedom between momentum cutoff ~�
and �, the leading order RG equations read

dvf

d lnl
¼ � g2vf

2�2
;

dZc

d lnl
¼ � g2

2�2
;

dZv0

d lnl
¼ g2

2�2
;

dZvz

d lnl
¼ g2

2�2
;

dZvxy

d lnl
¼ 0: (4)

Zc is the wave function renormalization and Zv0, Zvxy, and

Zvz are vertex corrections to c yc , c y�xðyÞc , and
c y�zc , respectively. The solution of the RG equa-

tions reads z ¼ 1þ g2

2�2 , �½vf� ¼ g2

2�2 , �½c yc � ¼ 2,

�½c y�zc � ¼ 2, �½c y�xðyÞc � ¼ 2þ g2

2�2 . The dynamical

scaling dimension z is changed because the Fermi velocity
acquires a nonzero scaling dimension under RG, leading to

the following scaling of the LDOS: �ð!Þ �!ð2�zÞ=z [28].
With the above scaling dimensions of the fermion bi-
linears, the long distance spin distribution around an iso-
lated magnetic impurity with in-plane moment is given by

sxðyÞðrÞ ¼ c y�xðyÞc ðrÞ � 1

r3þg2=�2
. Thus the spin polariza-

tion pattern remains similar to that shown in Figs. 1(c) and
1(d), but decays with a different power law.

In realistic system, the chemical potential may not locate
exactly at the Dirac point, in this case the finite chemical
potential becomes an infrared cutoff of our RG calcula-
tions, our result above can be applied to the distance
shorter than 1=kf � 37 nm for the typical Fermi energy

�10 meV. Quenched disorder has been studied in gra-
phene, with N ¼ 4 flavors of Dirac fermions [29–31]. In
this case, ripples of a graphene sheet, interpreted as a
random ‘‘gauge potential’’ BjðxÞc y�jc , have attracted

most of the attention. In contrast with our results, the
1=N expansion is usually taken when the RG equations
are derived for graphene. The competition between random
potentials and the Coulomb interaction has also been
studied in graphene. In this case, the RG equations lead
to various nontrivial fixed points [32].

In conclusion, we have investigated the effects of mag-
netic impurities on the surface states of a TI. A magnetic
impurity breaks TR symmetry and suppresses the low-
energy LDOS locally. The surface states mediate a cou-
pling between the magnetic impurities which is always
ferromagnetic when the chemical potential lies close to
the Dirac point. Therefore, we expect that a finite concen-
tration of magnetic impurities would give rise to a ferro-
magnetic ground state on the surface. This mechanism
provides a physical realization of the novel topological
magnetoelectric effect discussed in Ref. [8], which re-
quires breaking of TR symmetry on the surface of a TI.
We also investigated the effect of quenched impurities on

the surface states and presented the RG equations govern-
ing the flow of the coupling constants. We would like to
emphasize that the effects we proposed in this Letter are
unique for the surface of strong topological insulators. For
a ‘‘weak’’ topological insulator [5–7] with even number of
Dirac cones on the surface, the intercone scattering can
change both the surface DOS distribution and the RKKY
interaction between two magnetic impurities. The distinct
signatures of magnetic impurities on the surface states of a
TI discussed in this work can be readily observed in STM
experiments, possibly on the surface of Be2Se3 and related
TIs [14,15,33].
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