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We study the electrical and thermal transport near the heavy-fermion quantum critical point, identified

with the breakdown of the Kondo effect. We show that the electrical conductivity comes mainly from

conduction electrons while the thermal conductivity is given by both conduction electrons and localized

fermions (spinons), scattered with hybridization fluctuations of dynamical exponent z ¼ 3. As a result, we

reveal that not only electrical but also thermal resistivity displays quasilinear temperature dependence in

the intermediate temperature range, the main prediction of our transport study. An important feature turns

out to be emergence of additional entropy carriers, that is, spinon excitations. We find that the

Wiedemann-Franz ratio should be larger than the standard value, differentiating the Kondo breakdown

scenario from the Hertz-Moriya-Millis framework.
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The existence of quasiparticles is the cornerstone of
Landau’s Fermi-liquid theory [1] for the modern theory
of metals. Since they transport not only electric charge but
also entropy, one sees that the ratio (L ¼ �

T� ) between

thermal (�) and electrical (�) conductivities is given by a

universal number L0 ¼ �2

3 ðkBe Þ2 ¼ 2:45� 10�8 W�K�2

[2], provided quasiparticles do not lose their energy during
collisions, and certainly is satisfied at zero temperature in
the Landau Fermi-liquid theory. Not only conventional
metals [3] but also strongly correlated metals, such as
heavy fermions [4], turn out to follow the Wiedemann-
Franz (WF) law [5]. In particular, even quantum critical
metals of CeNi2Ge2 [6], CeRhIn5 [7], and CeCoIn5 [8]
have been shown to satisfy the WF law at least in the zero
temperature limit, thus validating the quasiparticle picture,
although their resistivities deviate from the conventional
T2 behavior.

Several years ago, violation of the WF law was observed
in the optimally electron-doped cuprate ðPr;CeÞ2CuO4 [4]

and hole-underdoped cuprate La2�xSrxCuO4 [9] while the
WF law turns out to hold in the overdoped cuprate

Tl2Ba2CuO6þ� [10], suggesting the emergence of non-

Fermi-liquid physics as a proximity of a Mott insulator.
Recently, anisotropic violation of the WF law has been
reported near the quantum critical point (QCP) of a typical
heavy-fermion compound CeCoIn5, where only c-axis
transport violates the WF law while ab-plane transport
follows it [11]. In this experiment the authors speculated
that the temperature quasilinear electrical resistivity and
vanishing spectral weight may be one common feature for
such non-Fermi-liquid physics. In this respect they natu-
rally proposed to observe violation of the WF law in
YbRh2Si2 as another typical heavy-fermion compound,
where both ab- and c-axis transport show the temperature

quasilinear electrical resistivity and vanishing spectral
weight [12].
Physically, one can expect violation of the WF law as

proximity of Mott physics or superconductivity away from
quantum criticality, and as emergence of non-Fermi-liquid
physics near QCPs. In a Mott insulator the presence of
charge gap makes electrical conductivity vanish, but gap-
less spin excitations can carry entropy, causing L> L0,
while Cooper pairs transport electric currents without en-
tropy in the superconducting state, resulting in L< L0. On
the other hand, entropy is enhanced near QCPs due to
critical fluctuations, and violation of the WF law is ex-
pected in principle.
In this Letter we examine thermal transport and viola-

tion of the WF law based on the Kondo breakdown sce-
nario [13,14] as one possible heavy-fermion quantum
transition for YbRh2Si2. This scenario differs from the
standard model of quantum criticality in a metallic system,
referred as the Hertz-Moriya-Millis framework [15], in the
respect that in the former case the whole heavy Fermi
surface is destabilized at the QCP.
Several heavy-fermion compounds have been shown

not to follow the SDW theory [12,16–18]. Strong diver-
gence of the effective mass near the QCP [16] and the
presence of localized magnetic moments at the transition
towards magnetism [17] seem to support a more exotic
scenario. In addition, rather large entropy and small mag-
netic moments in the antiferromagnetic phase may be
associated with antiferromagnetism out of a spin liquid
Mott insulator [19]. Combined with the Fermi surface
reconstruction at the QCP [16,18], this quantum tran-
sition is assumed to show breakdown of the Kondo
effect as an orbital selective Mott transition [19,20], where
only the f-electrons experience the metal-insulator
transition.
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Our main result is that not only electrical resistivity, but
also thermal resistivity shows quasilinear temperature de-
pendence around the Kondo breakdown QCP due to scat-
tering with hybridization fluctuations of dynamical
exponent z ¼ 3, the main prediction of our transport study.
In addition, we find that the WF law should be violated at
the Kondo breakdown QCP as proximity of spin liquid
Mott physics, thus L > L0, resulting from the presence of
additional entropy carriers, here spinon excitations.

We start from theUð1Þ slave-boson representation of the
Anderson lattice model (ALM) in the large-U limit

LALM ¼ X

i

cyi�ð@� ��Þci� � t
X

hiji
ðcyi�cj� þ H:c:Þ

þ V
X

i

ðbifyi�ci� þ H:c:Þ þX

i

byi @�bi

þX

i

fyi�ð@� þ �fÞfi� þ J
X

hiji
ðfyi��ijfj� þ H:c:Þ

þ i
X

i

	iðbyi bi þ fyi�fi� � 1Þ þ NJ
X

hiji
j�ijj2: (1)

Here, ci� and di� ¼ byi fi� are conduction electrons with a
chemical potential� and localized electron with an energy
level �f, where bi and fi� are the holon and spinon,

associated with hybridization and spin fluctuations, respec-
tively. The spin-exchange term for the localized orbital is
introduced for competition with the hybridization term,
and decomposed via exchange hopping processes of spi-
nons, where �ij is a hopping parameter for the decompo-

sition. 	i is a Lagrange multiplier field to impose the single

occupancy constraint byi bi þ fyi�fi� ¼ N=2, where N is
the number of fermion flavors with � ¼ 1; . . . ; N.

One can read the WF ratio in the mean-field approxi-
mation. In the heavy-fermion phase it is given by L ¼ L0,
representing a Fermi-liquid state of heavy quasiparticles
with a large Fermi surface. On the other hand, it becomes

L ¼ L0

�
tþ J�

t

�
2

in the spin liquid phase, where t is the hopping of the
conduction electrons and � is the spin liquid parameter.
By contrast, in the Uð1Þ slave-boson mean-field theory of
the t-J Hamiltonian,

HMF
tJ ¼ X

hiji
fNJj�ijj2 � ðt�þ J�ijÞfyj�fi� � H:c:g;

where the holon field is replaced with its mean-field value

of bi ¼
ffiffiffiffi
�

p
with hole concentration �, one finds L ¼

L0ðt�þJ�
t� Þ2 [21], which represents a strong violation of

the WF law at the vicinity of the insulating phase. This
comparison tells us that the orbital selective Mott transition
in the ALM has milder violation of the WF law than the
single-band Mott transition although the underdoped state
of the t-J model may have similarity with the fractional-
ized Fermi liquid [19] of the ALM.

Fluctuation-corrections are treated in the Eliashberg
framework [13]. The main physics is that the Kondo break-
down QCP is multiscale. The dynamics of the hybridiza-
tion fluctuations is described by z ¼ 3 critical theory due to
Landau damping of electron-spinon polarization above an
intrinsic energy scale E�, while by z ¼ 2 dilute Bose gas
model below E�, where z is the dynamical exponent. The
energy scale E� originates from the mismatch of the Fermi
surfaces of the conduction electrons and spinons, shown to
vary from Oð100Þ mK to Oð102Þ mK. Based on the z¼3
quantum criticality, a recent study [22] has fitted the di-
vergent Grüneisen ratio with an anomalous exponent 0.7.
Transport coefficients can be found from the following

transport equations

~Jc;f;bel ¼Kc;f;b
0 ð
c;f;b

~Eþ�c;f;b ~�� ~r�c;f;bÞþKc;f;b
1

�� ~rT
T

�
;

~Jc;f;bth ¼Kc;f;b
1 ð
c;f;b

~Eþ�c;f;b ~�� ~r�c;f;bÞþKc;f;b
2

�� ~rT
T

�
:

(2)

~Jc;f;belðthÞ is an electric (thermal) current for conduction elec-

trons, spinons, and holons, respectively, and ~E, ~�, �c;f;b,

and T are an external electric field, internal one, each
chemical potential, and temperature, respectively, where


c;f;b ¼ 1, 0, �1 and �c;f;b ¼ 0, 1, 1. Kc;f;b
0 , Kc;f;b

1 , and

Kc;f;b
2 are associated with electrical conductivity, thermo-

electric conductivity, and thermal conductivity for each
excitation, respectively. Obtaining ~� from the current con-

straint ~Jfel þ ~Jbel ¼ 0 with �c ¼ �f ��b, and considering

the open-circuit boundary condition, we find physical re-
sponse functions for electrical conductivity �t, thermo-
electric conductivity pt, and thermal conductivity �t,

�t ¼ �c þ
�b�f

�b þ �f

; pt ¼ pc þ
�bpf � �fpb

�b þ �f

;

�t

T
¼ �c

T
þ �f

T
þ �b

T
� ðpb þ pfÞ2

�b þ �f

� p2
t

�t

(3)

with �c;f;b � Kc;f;b
0 , pc;f;b � Kc;f;b

1 =T, and �c;f;b �
Kc;f;b

2 =T.
It is straightforward to evaluate all current-current cor-

relation functions in the one-loop approximation. We find

�cðTÞ ¼ C�cv
c2
F �bc;scðTÞ;

�fðTÞ ¼
C�fv

f2
F

½�bf;scðTÞ��1 þ ½�af;trðTÞ��1
;

pcðTÞ ¼ �2

3

cF
�F

T�cðTÞ; pfðTÞ ¼ �2

3

cF
�F

T�fðTÞ;
�cðTÞ
T

¼ �2

3
�cðTÞ;

�fðTÞ
T

¼ �2

3
�fðTÞ (4)

with C ¼ N
�

R1
�1 dy 1

ðy2þ1Þ2 . In the electrical conductivity
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�cðfÞ and vcðfÞ
F are density of states and Fermi velocity for

conduction electrons (spinons), respectively. �bcðfÞ;scðTÞ ¼
½=�cðfÞðTÞ��1 is the scattering time due to z ¼ 3 hybrid-

ization fluctuations, given by

=�cðfÞðT > E�Þ ¼ mbV
2

12�vfðcÞ
F

T ln

�
2T

E�

�
;

=�cðfÞðT < E�Þ ¼ mbV
2

12�vfðcÞ
F

T2

E� ln2;

where mb ¼ ð2NV2�cÞ�1 is the band mass for holons.
Note that hybridization fluctuations are gapped at T <

E�, resulting in the Fermi-liquid-like correction. �af;trðTÞ ¼
fð kfF
16�NÞ2=3

a T5=3g�1 is the transport time associated with

z ¼ 3 gauge fluctuations, where a � �=vf
F is the

Landau damping coefficient for gauge fluctuations and

kfF is the Fermi momentum of spinons. In the thermo-
electric coefficient �F is the Fermi energy for conduction
electrons, and cF is a geometrical factor, here cF ¼ 3=2 for
the spherical Fermi surface [23].

Several remarks are in order for each transport coeffi-
cient. An important point is that the vertex corrections for
scattering with hybridization fluctuations can be neglected,
a unique feature of the two band model, resulting from
heavy mass of spinons [13,14]. This allows us to replace
the transport time with the scattering time for such a
process. On the other hand, vertex corrections for scatter-
ing with gauge fluctuations turn out to be crucial, where
infrared divergence of the self-energy correction at finite
temperatures is cancelled via the vertex correction, giving
rise to gauge-invariant [24] finite physical conductivity
[25]. As a result, the gauge noninvariant divergent spinon
self-energy =�a

fðTÞ in =�b
fðTÞ þ =�a

fðTÞ of the conduc-

tivity expression is replaced with the gauge-invariant finite
transport time ½�af;trðTÞ��1. Both irrelevance (hybridization

fluctuations) and relevance (gauge fluctuations) of vertex
corrections can be also checked in the quantum Boltzman
equation study [26].

Both the thermoelectric and thermal conductivities are
nothing but the Fermi-liquid expressions, where each fer-
mion sector satisfies the WF law. Although inelastic scat-
tering with both hybridization and gauge fluctuations may
modify the Fermi-liquid expressions beyond the one-loop

approximation, the WF law for each fermion sector will be
preserved at least in the zero temperature limit, where such
inelastic scattering processes are suppressed. One may
regard the WF law for each fermion sector as the most
important assumption in this Letter.
Transport coefficients for holon excitations turn out to

be much smaller than fermion contributions, that is,
�cðTÞ � �fðTÞ � �bðTÞ, pcðTÞ � pfðTÞ � pbðTÞ, and

�cðTÞ � �fðTÞ � �bðTÞ as clearly shown in Fig. 1, thus

irrelevant. Physically the dominance of fermion contribu-
tions can be understood from an argument of density of
states. Since there are many states at the Fermi surface in
the vacuum state, their conductivities diverge in the clean
limit as the temperature goes down to zero. On the other
hand, there are no bosons at zero temperature, thus their
conductivity vanishes when T ! 0.
Inserting all contributions into Eq. (3), we find the

physical transport coefficients near the Kondo breakdown
QCP. Interestingly, the dominance of fermion contributions
allows us to simplify the total transport coefficients as

�tðTÞ � �cðTÞ ¼ C�cv
c2
F �cscðTÞ;

ptðTÞ � pcðTÞ ¼ �2

3

cF
�F

T�cðTÞ;

�tðTÞ
T

� �cðTÞ
T

þ �fðTÞ
T

¼ �2

3
ð�cðTÞ þ �fðTÞÞ:

(5)

Actually, we have checked that each approximate formula
matches with each total expression. The main point is that
spinons participate in carrying entropy, enhancing the ther-
mal conductivity, while both electric and thermoelectric
conductivities result from conduction electrons
dominantly.
Figure 2 shows the quasilinear behavior in temperature

for both electrical and thermal resistivities above E�, re-
sulting from the dominant z ¼ 3 scattering with hybridiza-
tion fluctuations. The T-linear relaxation time in transport
is typical of the scaling of the free energy with z ¼ 3 and
� ¼ 1=2, where � is the correlation-length exponent, pro-
vided a mechanism for decaying the current is present in
the theory.
The WF ratio is given by

LðTÞ � �tðTÞ
T�tðTÞ �

�cðTÞ þ �fðTÞ
T�cðTÞ � L0

�
1þ �fv

f
F

�cv
c
F

�
(6)
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FIG. 1 (color online). Left: Electrical
conductivity from conduction electrons
(blue), spinons (red), and holons (green).
Left-inset: Electrical conductivity from
holons much smaller than contributions
from fermions. Right: Thermoelectric
conductivity from conduction electrons
(blue), spinons (red), and holons (green).
Right, inset: Thermoelectric conductiv-
ity from holons much smaller than con-
tributions from fermions.
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in the low temperature limit, where gauge-fluctuation cor-
rections are irrelevant compared with hybridization-
fluctuation corrections, thus ignored in the last expression.
This result would be robust beyond our approximation
because this expression includes just the density of states
and velocity at the Fermi energy, thus would be expected to
be governed by a conservation law.

The larger value of the WF ratio is the characteristic
feature of the Kondo breakdown scenario, resulting from
additional entropy carriers, here the spinon excitations. If
we perform the transport study based on the SDW theory in
the same approximation as the present framework, we will

find �tðTÞ / �trðTÞ, ptðTÞ ¼ �2

3
cF
�F
T�tðTÞ, and �tðTÞ

T ¼
�2

3 �tðTÞ, where likewise contributions from critical boson

excitations are assumed to be irrelevant, and the scattering
time is replaced with the transport time. As a result, theWF
law is expected to hold although non-Fermi liquid physics
governs the quantum critical regime. Actually, this has
been clearly demonstrated in the self-consistent renormal-
ization theory, well applicable to CeNi2Ge2 [6]. In this
respect the violation of the WF law discriminates the
Kondo breakdown scenario from the SDW framework.

In conclusion, we found marginal Fermi-liquid physics
for both electrical and thermal transport near the Kondo
breakdown QCP due to scattering with z ¼ 3 hybridization
fluctuations. The Kondo breakdown QCP should vio-
late the WF law due to proximity of spin liquid Mott
physics, i.e., existence of additional entropy carriers, that
is, spinons.

To understand both the T-linear c-axis, and

T3=2-behavior ab-plane resistivities in CeCoIn5, it seems
necessary to take into account both hybridization fluctua-
tions and anisotropic antiferromagnetic correlations on an
equal footing. Introduction of both excitations may give
rise to an anisotropic destruction of the Fermi surface,
suppressing the ‘‘upward’’ violation of the WF law in the
Kondo breakdown scenario. On the other hand, we believe
that the Kondo breakdown mechanism without antiferro-

magnetic correlations has the best chance to be applicable
to the YbRh2Si2-type compound, reflected from the
T-linear dependence of electrical resistivity independent
of directions. In this respect our study predicts the T-linear
dependence for the thermal transport in YbRh2Si2.
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FIG. 2 (color online). Quasilinear electrical (blue) and thermal
(red) resistivity above E�, where thermal resistivity is smaller
than electrical resistivity owing to the contribution from spinon
excitations.
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