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We present a detailed analysis of the critical behavior close to the Mott-Anderson transition. Our

findings are based on a combination of numerical and analytical results obtained within the framework of

typical-medium theory—the simplest extension of dynamical mean field theory capable of incorporating

Anderson localization effects. By making use of previous scaling studies of Anderson impurity models

close to the metal-insulator transition, we solve this problem analytically and reveal the dependence of the

critical behavior on the particle-hole symmetry. Our main result is that, for sufficiently strong disorder, the

Mott-Anderson transition is characterized by a precisely defined two-fluid behavior, in which only a

fraction of the electrons undergo a ‘‘site selective’’ Mott localization; the rest become Anderson-localized

quasiparticles.
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Many strongly correlated materials find themselves
close to Mott localization [1]—a process through which
all the valence electrons within a narrow band turn into
localized magnetic moments. In real systems, disorder
introduced by doping or impurities often cannot be ne-
glected, as it provides an alternative fundamental mecha-
nism for suppressing metallicity, through the process of
Anderson localization [2]. The effects of weak interactions
in this regime have been studied using perturbative meth-
ods [3], but these approaches cannot describe the strong
correlation effects associated with incipient magnetism
and Mott localization.

Which of these two routes to localization—Anderson or
Mott—dominate? In most cases, simple estimates show
that both effects play a comparable role and both need to
be taken into account. Most existing theories are not able to
combine these two fundamental processes in the same
framework, and this conceptual difficulty has provided
the essential pitfall in our understanding of the metal-
insulator transition (MIT).

At the moment, the most successful theory for the Mott
transition is based on dynamical mean field theory (DMFT)
[4] ideas. By replacing the environment of each site by its
average value, the original version of this theory proved
unable to describe the spatial fluctuation effects associated
with the approach to the Anderson transition. Very recent
work [5], however, identified the conceptually simplest
extension of DMFT capable to overcome these shortcom-
ings—the typical-medium theory (TMT). In the noninter-
acting limit, this theory provides a reasonable picture of the
Anderson transition, as established by quantitative com-
parison [5] with exact (numerical) results.

The TMT-DMFT method was first applied to the disor-
dered Hubbard model by Byczuk et al. [6], who obtained
the phase diagram for this problem from the numerical

solution using the numerical renormalization group (NRG)
method for the impurity solver. However, the physical
nature of the phases and of the phase transition was not
investigated in that numerical study.
The task of elucidating the physical mechanism and the

precise form of the Mott-Anderson critical point within the
TMT-DMFT description is the main subject of this Letter.
By making use of previous scaling studies [7] of Anderson
impurity models close to the MIT, we present a detailed
analytic solution for this problem, which emphasizes the
dependence of the system properties on its particle-hole
symmetry. Our main finding is that, for sufficiently strong
disorder, the physical mechanism behind the Mott-
Anderson transition is the formation of two fluids, a be-
havior that is surprisingly reminiscent of the phenomenol-
ogy proposed for doped semiconductors [8]. Here, only a
fraction of the electrons (sites) undergo Mott localization;
the rest can be described as Anderson-localized quasipar-
ticles. Thus, in our picture the Mott-Anderson transition
can be seen as reminiscent of the ‘‘orbitally selective’’
Mott localization [9]; precisely, here we have a ‘‘site
selective’’ Mott transition, since it emerges in a spatially
resolved fashion.
The TMT-DMFT method and order parameters.—We

consider a half-filled Hubbard model [4] with random
site energies, as given by the Hamiltonian

H ¼ �V
X
hiji�

cyi�cj� þX
i�

"ini� þU
X
i

ni"ni#: (1)

Here, cyi� (ci�) creates (destroys) a conduction electron

with spin � on site i, ni� ¼ cyi�ci�, V is the hopping
amplitude, and U is the on-site repulsion. The random
on-site energies "i follow a distribution Pð"Þ, which is
assumed to be uniform and have width W.
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The TMT-DMFT method [5,6] maps the lattice problem
onto an ensemble of single-impurity problems, corre-
sponding to sites with different values of the local energy
"i, each being embedded in a typical effective medium
which is self-consistently calculated. In contrast to stan-
dard DMFT [10], the TMT-DMFT method determines this
effective medium by replacing the spectrum of the environ-
ment (‘‘cavity’’) for each site by its typical value, which is
determined by the process of geometric averaging. For a
simple semicircular model density of states, the corre-
sponding bath function is given by [5,6] �ð!Þ ¼
V2Gtypð!Þ, with Gtypð!Þ ¼ R1

�1 d!0�typð!0Þ=ð!�!0Þ
being the Hilbert transform of the geometrically averaged
(typical) local density of states (LDOS) �typð!Þ ¼
expfR d"Pð"Þ ln�ð!; "Þg. Given the bath function �ð!Þ,
one first needs to solve the local impurity models and
compute the local spectra �ð!; "Þ ¼ ���1ImGð!; "Þ,
and the self-consistency loop is then closed by the geomet-
ric averaging procedure.

To qualitatively understand the nature of the critical
behavior, it is useful to concentrate on the low-energy
form for the local Green’s functions, which can be speci-
fied in terms of two Fermi liquid parameters as

Gð!; "iÞ ¼ Zi

!� ~"i � Zi�ð!Þ ; (2)

where Zi is the local quasiparticle (QP) weight and ~"i is the
renormalized site energy [10]. The parameters Zi and ~"i
can be obtained using any quantum impurity solver, but to
gain analytical insight here we focus on the variational
calculation provided by the four-slave-boson technique
(SB4) of Kotliar and Ruckenstein [11], which is known
to be quantitatively accurate at T ¼ 0. We should stress,
though, that most of our analytical results rely only on
Fermi liquid theorems constraining the qualitative behav-
ior at low energy, and thus do not suffer from possible
limitations of the SB4 method.

Within this formulation, the metal is identified by non-
zero QP weights Zi on all sites and, in addition, a nonzero
value for both the typical and the average [�avð!Þ ¼R
d"Pð"Þ�ð!; "Þ] LDOS. Mott localization (i.e., local mo-

ment formation) is signaled by Zi ! 0 [10], while
Anderson localization corresponds to Zi�0 and �av � 0,
but �typ ¼ 0 [2,5]. While Ref. [6] concentrated on �typ and

�av, we find it useful to simultaneously examine the QP
weights Zi, in order to provide a complete and precise
description of the critical behavior.

Phase diagram.—Using our SB4 method, the TMT-
DMFT equations can be numerically solved to very high
accuracy, allowing very precise characterization of the cri-
tical behavior. In presenting all numerical results we use
units such that the bandwidth B ¼ 4V ¼ 1. Figure 1(a)
shows the resulting T ¼ 0 phase diagram at half filling,
which generally [12] agrees with that of Ref. [6]. By
concentrating first on the critical behavior of the QP
weights Zi, we are able to clearly and precisely distinguish

the metal from the insulator. We find that at least some of
the Zi vanish all along the phase boundary. By taking a
closer look, however, we can distinguish two types of
critical behavior, as follows.
Mott-Anderson vs Mott-like transition.—For sufficiently

strong disorder (W >U), the Mott-Anderson transition
proves qualitatively different than the clean Mott transi-
tion, as seen by examining the critical behavior of the QP
weights Zi ¼ Zð"iÞ [Fig. 1(b)]. Here Zi ! 0 only for 0<
j"ij<U=2, indicating that only a fraction of the electrons
turn into localized magnetic moments. The rest show
Zi ! 1 and undergo Anderson localization (see below).
Physically, this regime corresponds to a spatially inhomo-
geneous system, with Mott fluid droplets interlaced with
regions containing Anderson-localized quasiparticles. In
contrast, for weaker disorder (W <U) the transition re-
tains the conventional Mott character. In this regime
Zi ! 0 on all sites [Fig. 1(c)], corresponding to Mott
localization of all electrons.
Wave function localization.—To more precisely charac-

terize the spatial fluctuations of the quasiparticle wave
functions, we compare the behavior of the typical (�typ)

and the average (�av) LDOS. The approach to the Mott-
Anderson transition (W >U) is illustrated by increasing
disorder W for fixed U ¼ 1:25 (Fig. 2—top panels). Only
those states within a narrow energy range (j!j< t, see also
Fig. 4) around the band center (the Fermi energy) remain
spatially delocalized (�typ � �av), due to strong disorder

screening [7,10] within the Mott fluid (sites showing
Zi ! 0 at the transition). The electronic states away from
the band center (i.e., in the band tails) quickly get
Anderson-localized, displaying large spatial fluctuations
of the wave function amplitudes [5] and having �typ��av.

The spectral weight of the delocalized states (states
within j!j< t) decreases with disorder and vanishes at
the transition, indicating the Mott localization of this frac-
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FIG. 1 (color online). (a) T ¼ 0 phase diagram for the disor-
dered half-filled Hubbard model, obtained from the numerical
SB4 solution of TMT-DMFT method. Panels (b) and (c) show
the evolution of the quasiparticle weight Zð"iÞ in the critical
region. Behavior at (b) the Mott-Anderson transition (W >U) is
illustrated by increasing disorder W ¼ 2:5, 2.6, 2.7, 2.8, 2.83
(from the black curve to the brown one), for fixed U ¼ 1:25;
and at (c) the Mott-like transition (W <U) by increasing the
interaction U ¼ 1:5, 1.6, 1.7, 1.8, and 1.86, at fixed W ¼ 1:0.
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tion of electrons. At this critical point, the crossover scale t
also vanishes. In contrast, the height �typð0Þ remains finite

at the transition, albeit at a reduced W-dependent value, as
compared to the clean limit. More precise evolution of
�typð0Þ is shown in Fig. 3(a), demonstrating its critical

jump.
Behavior at the Mott-like transition (W <U) is dramati-

cally different (Fig. 2—bottom panel). Here �typ � �av

over the entire QP band, indicating the absence of
Anderson localization. It proves essentially identical as
that established for the disordered Hubbard model within
standard DMFT [10], reflecting strong correlation-
enhanced screening of disorder [7], where both �avð! ¼
0Þ and �typð! ¼ 0Þ approach the bare (W ¼ 0) value [see

also Fig. 3(b)]. Similar results were found in Ref. [6], but
an explanation was not provided.

The corresponding pinning [7,10] for �ð! ¼ 0; "Þ is
shown in the insets of Fig. 3, both for the Mott-Anderson
and the Mott-like transition. In the Mott-Anderson case,
this mechanism applies only within the Mott fluid (j"j<
U=2), while within the Anderson fluid (j"j>U=2) it as-

sumes smaller values, explaining the reduction of �typð0Þ in
this case. We suggest that this spatial distribution of the
DOS at the Fermi energy (each " corresponds to a different
position in the lattice) could be probed by scanning tunnel-
ing microscopy experiments.
Analytical solution.—Within our SB4 approach, the

TMT-DMFT order-parameter function �typð!Þ satisfies

the following self-consistency condition

�typð!Þ ¼ exp
Z

d"Pð"Þð ln½V2Z2ð"Þ�typð!Þ�
� lnf½!� ~"ð"Þ � V2Zð"ÞReGtypð!Þ�2
þ ½�V2Zð"Þ�typð!Þ�2gÞ: (3)

While the solution of this equation is in general difficult, it
simplifies in the critical region, where the QP parameter
functions Zð"Þ and ~"ð"Þ assume scaling forms which we
carefully studied in previous work [7]. This simplification
allows one, in principle, to obtain a closed solution for all
quantities. In particular, the crossover scale t, which de-
fines the �typð!Þ mobility edge (see Fig. 4 and Ref. [7]), is

determined by setting �typð! ¼ tÞ ¼ 0.

Using this approach we obtain that, in the case of Mott-
like transition (W <U), the critical behavior of all quan-
tities reduces to that found in standard DMFT [10], includ-
ing t�UcðWÞ �U [in agreement with the numerical
results of Fig. 4(b)], perfect screening of site randomness
[7,10], and the approach of �avð! ¼ 0Þ and �typð! ¼ 0Þ to
the clean value. The precise form of the critical behavior
for the crossover scale t is more complicated for the Mott-
Anderson transition (W >U) [as confirmed by our numeri-
cal results in Fig. 4(a)], and this will not be discussed here.
Instead, we focus on elucidating the origin of the puz-

zling behavior of �c ¼ �typð! ¼ 0Þ, which is known [5] to
vanish linearly �c � ðWc �WÞ for U ¼ 0, but which we
numerically find to display a jump (i.e., a finite value) at
criticality, as soon as interactions are turned on. For! ¼ 0
our self-consistency condition reduces [13] to
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FIG. 4 (color online). Frequency dependence of the typical
DOS very close to the metal-insulator transition for (a) the
Mott-Anderson transition (W >U) at U ¼ 1:25 and (b) the
Mott-like transition (W<U) at W ¼ 1:0. The insets show how,
in both cases, the �typð!Þ bandwidth t ! 0 at the transitions.
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FIG. 3 (color online). Typical and average values of �ð0Þ as the
metal-insulator transition is approached for (a) U ¼ 1:25 and
(b)W ¼ 1:0. The insets show �ð0Þ as a function of " for (a)W ¼
2:5, 2.6, 2.7, and 2.83 [from the black curve to the blue (or gray)
one] and (b) U ¼ 1:5, 1.6, 1.7, and 1.86.
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Z
d"Pð"Þ ln V2Z2ð"Þ

~"ð"Þ2 þ �2V4Z2ð"Þ�2
c

¼ 0; (4)

which further simplifies as we approach the critical point.
Here, the QP parameters Zð"Þ ! 0 and ~"ð"Þ � Z2ð"Þ �
Zð"Þ for the Mott fluid (j"j<U=2), while Zð"Þ ! 1 and
j~"ð"Þj ! j"�U=2j for the Anderson fluid (j"j>U=2),
and we can write

0 ¼
Z U=2

0
d"Pð"Þ ln 1

ð�V�cÞ2
�

Z ðW�UÞ=2

0
d"Pð"Þ

� ln½ð"=VÞ2 þ ð�V�cÞ2�: (5)

This expression becomes even simpler in the U � W
limit, giving

U

W
ln

1

�V�c

þ a� bV�c þOð�2
cÞ ¼ 0; (6)

where aðW;UÞ ¼ ð1�U=WÞf1� ln½ðW �UÞ=2V�g and

b ¼ 2�2V
W . This result reproduces the known result [5] �c �

ðWc �WÞ at U ¼ 0, but dramatically different behavior is
found as soon as U > 0. Here, a nonanalytic (singular)
contribution emerges from the Mott fluid (j"j<U=2),
which assures that �c must remain finite at the critical
point, consistent with our numerical results (see Fig. 3).
Note that the second term in Eq. (5), coming from the
Anderson fluid (j"j>U=2), vanishes at the Mott-like tran-
sition (U >W), and our result reproduces the standard
condition ��cV ¼ 1 [10], which corresponds to the clean
limit.

A further glimpse on how the condition ��cV ¼ 1 is
gradually violated as we cross on the Mott-Anderson side
is provided by solving Eq. (5) for U & W limit, giving

�c � 1

�V

�
1� 1

24

�
W

V

�
2
�
1� U

W

�
3
�
; (7)

again consistent with our numerical solution [14].
But what is the physical origin of the jump in �c? To see

it, note that the singular form of the first term in Eq. (5)
comes from the Kondo pinning [10] ~"ð"Þ � Z2ð"Þ � Zð"Þ
within the Mott fluid. This behavior reflects the particle-
hole symmetry of our (geometrically averaged) �typð! ¼
0Þ bath function, which neglects site-to-site cavity fluctua-
tions present, for example, in more accurate statistical
DMFT theories [15]. Indeed, in absence of particle-hole
symmetry, one expects [10] ~"ð"Þ � Zð"Þ, and the resulting
" dependence should cut off the log singularity responsible
for the jump in �c. This observation provides a direct path
to further refine the TMT-DMFT approach, reconciling the
present results with previous statistical DMFT findings
[15]. As a next step, one should apply the TMT ideas to
appropriately chosen effective models [16], in order to
eliminate those features reflecting the unrealistic particle-
hole symmetry built in the current theory. We emphasize
that the two-fluid picture is a consequence of only a
fraction of the sites showing Z ! 0 and is not dependent

on either particle-hole symmetry or the consequent jump in
the DOS.
Conclusions.—This Letter explores the TMT-DMFT

critical region of the Mott-Anderson transition. We show
how key insight can be obtained by focusing on the evo-
lution of the local quasiparticle weights Zi as a second
order parameter describing tendency to Mott localization,
in addition to the Anderson-like TMTorder parameter �typ.

This analysis reveals the fundamental two-fluid character
of the Mott-Anderson transition, consistent with the phe-
nomenology proposed for doped semiconductors [8].
Physically, it describes spatially inhomogeneous situ-
ations, where the Fermi liquid quasiparticles are destroyed
only in certain regions—the Mott droplets—but remain
coherent elsewhere. Understanding the details of such
‘‘site selective’’ Mott transitions should be viewed as an
indispensable first step in solving the long-standing prob-
lem of MIT in disordered correlated systems.
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[5] V. Dobrosavljević et al., Europhys. Lett. 62, 76 (2003).
[6] K. Byczuk, W. Hofstetter, and D. Vollhardt, Phys. Rev.

Lett. 94, 056404 (2005).
[7] M. C.O. Aguiar et al., Phys. Rev. B 73, 115117 (2006);

Physica (Amsterdam) 403B, 1417 (2008).
[8] M.A. Paalanen et al., Phys. Rev. Lett. 61, 597 (1988).
[9] L. De Leo, M. Civelli, and G. Kotliar, Phys. Rev. B 77,

075107 (2008); see also Phys. Rev. Lett. 101, 256404
(2008); A. Koga et al., Phys. Rev. Lett. 92, 216402
(2004); A. Camjayi et al., Nature Phys. 4, 932 (2008).
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