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We show that a large class of viscoelastic fluids, i.e., transient networks, are brittle according to the

Griffith’s theory of solid fracture. However, contrary to solids, cracks are intrinsic to the material arising

from the equilibrium nature of the fluid microstructure. The brittleness of these fluids comes from thermal

fluctuations of bonds distribution. In this approach, the rupture stress is predicted to be on the order of the

Young modulus, in very good agreement with experimental values.
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In principle liquid liable to fracture in a brittle manner
should possess a structure capable of transmitting elastic
forces over macroscopic scales. But this structure should
also be labile and reversible to let the material flow. The
fracture of fluids should only be observed for high rates of
deformation for which the fluid cannot relax, the material
responding in a solidlike manner. Such behavior was re-
cently reported by Gladden with micellar fluids [1]. This
phenomenon is also well known as cohesive failure in the
polymer literature [2], and its consequences on flow prop-
erties have been extensively reported [3,4]. However, the
microscopic mechanisms of fracture nucleation are still
unknown. Here we investigate fracture nucleation in a
model viscoelastic fluid. We provide strong evidence of
the brittleness of this material in the framework of
Griffith’s theory of brittle fracture. We show that such fluid
can fail in a brittle manner because microcracks, present
within the material, lower the overall strength, as in real
solids. Moreover, by identifying thermal fluctuations of the
bonds distribution within the materials with microcracks,
we explain the unexpected low value of the surface tension
associated with the fracture; this leads to the prediction that
the critical rupture stress is on the order of the Young
modulus, in agreement with the experimental results.

We used a model system made of oil-in-water droplet
microemulsion connected to each other by telechelic poly-
mers [5]. The droplets are swollen with decane, stabilized
by a cationic surfactant (cetyl-pyridinium chloride) and a
cosurfactant (n octanol), and also dispersed in brine (0:2M
NaCl). The telechelic polymer have a hydrophilic back-
bone [poly(ethylene) oxide], with a hydrophobic group
(eighteen CH2 groups) at both ends. These end chains stick
reversibly into the hydrophobic core of the oil droplets and
can either decorate (loop) or link (bridge) the droplets,
leading to a self-assembled structure, Fig. 1. We define
the connectivity r as the average number of hydrophobic
stickers per droplet. Far above from the percolation thresh-
old [6] this model system behaves as an elastic network
with a shear modulus [7] G0 ¼ nkBT (n is the number
density of linking chains, kB the Boltzman’s constant, T the

temperature). The adhesion energy of a sticker in oil
droplets is moderate (�20kBT) so that it randomly escapes
from time to time and reconnects to any accessible droplet
and the topology of the network is permanently renewed,
allowing stress relaxation and flow. These telechelic based
systems provide ideal experimental realizations of the
notion of transient networks [7,8] with a Maxwell model
as a constitutive equation characterized by G0 and a
single relaxation time � [9], related to the life time of
the cross-links. We have measured those two quantities
(G0 and �) by standard linear rheological tests performed
with an Ares-RFS controlled-strain rheometer at 23 �C.
Consistently with the Maxwell model, the shear stress
�yz measured in a steady state increases linearly with the

shear rate _� (�yz ¼ G0� _�) and the first normal stresses

difference (N1 � � � �zz � �yy ¼ 2G0� _�2) quadrati-

cally, Fig. 2. However, above a critical stress, the flow
curve exhibits a sharp discontinuity and at the same time,
fractures open up all around the sample and grow rapidly. It
is worth noting that the fractures are tilted 45� from the
shear plane, perpendicular to the direction of the maximum
extension, Fig. 2. Furthermore, this happens inside the
linear flow regime ( _�� < 1). Interestingly, these fractures
appear at a critical rate such that N1 is larger than �yz
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FIG. 1. Schematic of a bridged microemulsion. The telechelic
polymers can either link two oil droplets or loop on a single one.
(Left) Before the crack nucleation (bold dashed line) polymers
can bridge oil droplets on both side of the bold dashed line.
(Right) When the crack occurs, the same polymers cannot cross
the bold dashed line anymore and form bridges in the other
directions.
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indicating that the tensile stress rather than the shear stress
triggers the phenomenon, a systematic feature of brittle
fracture in solids. But in contrast to solids, here the frac-
tures heal over rapidly after the shear rate is switched off,
and a new experiment can be performed after a few mi-
nutes with quantitatively the same behavior. A brittlelike
fracture is also observed with the same fluid in a purely
extensional flow during a pendant drop experiment
monitored with a fast camera (FastCam Photron), equipped
with a macrolens, Fig. 3(a). A syringe pump (KDS 200

Scientific) was used to form the drops with a fixed volume
of 50 �l and a constant rate of 2 ml=h for all the solutions.
The fluid initially in the syringe flows through a lower
plastic tube of diameter of 2.60 mm and a drop emerges
at the tube outlet which is enclosed in a glass box to reduce
air currents. During the experiment, the tensile stress
steadily increases as the cylindrical body of the drop thins
up. At any time, the recorded extension rate _� as a function
of the effective extensional stress � agrees with the
Maxwell model: the extensional viscosity at moderate
rate is found three times larger than the shear viscosity
(� ’ 3G0� _�). But suddenly again, inside the linear regime
( _�� ’ 0:2), a fracture nucleates and propagates across the
sample which leads to the rupture of the drop; see Fig. 3(b)
and movie 1 in the supplementary material [10]. We got the
critical stress at the rupture of the drop � in the following
way. We measured the diameter of the drop where the
fracture occurs and we weighted the mass of the falling
part with accuracy 1 mg. So the stress�zz is measured with
a precision of 5%. Finally, the stress at the rupture is equal
to�zz � �yy with �yy the radial stress corresponding to the

Laplace pressure. It is worth noting that upon growing, the
fracture exhibits the parabolic shape [Fig. 3(c)] expected
for an elastic solid breaking under tension [11,12]. Indeed,
on the time scale of the rupture, which is much shorter than
the relaxation time (1 s), the material is responding in a
solidlike manner. Finally, fractures are observed when
inflating an air bubble in the bulk of the viscoelastic fluid;
see Fig. 4 and movie 2 in the supplementary material [10].
During this experiment a bubble grows at a fixed pressure
(imposed by a MFCS-4C device, Fluigent, Paris, France)

y (mm)

z
(m

m
)

0 0.1 0.2 0.3

0

0.2

0.4

0.6

-0.2

-0.4

-0.6

0.6 mm

6.6 ms 8.3 ms 9.1 ms

63.6 s20.9 s 71.50 s71.47 s

1 mm a

z

y

fracture

b

c

FIG. 3. (a) Elongation of a drop of a solution of bridged
microemulsion (r ¼ 9) under gravity. The fracture occurs at
the surface of the filament. The critical measured tensile stress
is � ¼ 1720 Pa. (b) Zoomed images of the same fracture which
propagates across the sample. (c) Typical fracture profile corre-
sponding to the picture b (middle one) (circles). The black line
represents a power law uðxÞ / ffiffiffi
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FIG. 4. (a) Bubble growth at a fixed pressure 2000 Pa inside
the same solution as in Fig. 2. (b) A disklike fracture appears at
the bubble surface. (c),(d),(e) Fracture propagation. The critical
pressure is equal to 1800 Pa which gives a critical stress (after
taking into account the Laplace pressure �160 Pa) equals to
1640 Pa.
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FIG. 2. (Left) shear stress (�yz) and normal stress (N1 ¼
�zz � �yy) versus shear rate for a bridged microemulsion with

r ¼ 9. The continuous lines are fits (Maxwell model). (Right)
Development of a fracture, occurring at the surface of the
sample, for a shear rate equal to 0:8 s�1, corresponding to the
critical normal stress � ¼ 1190 Pa.
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from the outlet of a capillary tube (diameter 0.8 mm) into
the fluid. At moderate excess pressure of air injection �P
(above atmospheric pressure), the bubble grows progres-
sively. But when�P exceeds a critical value, a flat disklike
crack suddenly arises at an arbitrary point onto the bubble
surface and grows explosively, sharply cutting apart the
sample. If �P is released back below its critical value, the
fracture heals spontaneously. Interestingly, for sufficiently
large bubble the critical tensile stress (�) at the bubble
surface is identical to the excess air pressure � ¼ �P,
whose value is comparable to those obtained in the two
other geometries.

In each experiment presented here, the fracture mecha-
nism is a two step process. In the following, it will be
shown that the first step consists in the spontaneous nu-
cleation of a wet fracture starting up from a lack of cohe-
sion of the network, the microcrack being filled up with
solvent. The second step corresponds to the destabilization
of the capillary bridge, driving eventually to the dry frac-
ture with parabolic profile as displayed in Fig. 3(b). This
last step and the properties of the fracture propagation will
be described in detail elsewhere. In the following, we focus
only on the first step, i.e., the fracture nucleation.

These three experimental facts present strong analogies
with the fracture of brittle solids: the rupture suddenly
appears within the linear regime, it is driven by the tensile
stress, and it exhibits a parabolic profile in the extensional
test. It is therefore tempting to extend the Griffith’s theory
of brittle fracture [13] to the present transient network. The
Griffith’s point of view starts up with preexisting micro-
cracks and considers the energy required for them to grow
spontaneously under a given constant stress. A surface
energy has to be paid to break more cohesive bonds,
counterbalanced by the bulk elastic energy released by
the opening of the crack. For a given stress � the Griffith
energy cost W for a crack of size L reads then

Wð�; LÞ ¼ �

2
L2Fs � �

�L3�2

6Y
; (1)

with L the size of a disklike crack, Fs the cohesive energy
per unit area, Y ¼ 3G0 the Young modulus, and � ’ 1 a
constant depending on geometrical factors. The stress �
being fixed, Wð�;LÞ reaches a maximum:

Wmaxð�Þ ¼ 2�

3�2

F3
sY

2

�4
(2)

for a crack size (the so-called Griffith length) Lcð�Þ ¼ 2
� �

FsY
�2 . For a crack size larger than Lc; dW=d� < 0, leading

to a catastrophic growth of the crack, in contrast with a
crack size smaller than Lc. In brittle solids, microcracks are
formed irreversibly during the material processing. Upon
increasing the applied stress the largest among them
becomes critical and leads to fracture. In our case, how-
ever, the elastic network results from an equilibrium self-
assembly of bonds, with a thermally activated size distri-

bution of domains without polymers connecting droplets
that we identify with microcracks. Pomeau [14] suggested
that the Griffith’s energy [Eq. (1)] can be viewed as an
energy barrier of height Wmaxð�Þ that can be overcome by
thermal fluctuations according to Kramers theory. This
occurs as soon as Wmaxð�cÞ � kBT. Then, from Eq. (2), a
fracture appears for � � �c with

�c ¼
�
2�

3�2

F3
sY

2

kBT

�
1=4

: (3)

This approach has been used to interpret fracture nu-
cleation in 2D microcrystals [15], gels [16], and heteroge-
neous materials [17]. However, it was not able to explain
all the experimental features [17]. In these experiments,
microcracks are not reversible. This is in strong contrast
with our system, where the use of Pomeau’s theory is here
fully justified because microcrack size distribution is en-
tirely controlled by thermal energy fluctuations (healing
and growth are both possible). In order to calculate�c from
Eq. (3), we need a precise estimate of the surface energy
Fs. The microcracks appear well before the fracture forms
an interface with air, Fig. 3. A microcrack corresponds to a
surface across which there is no connection between oil
droplets. The crack is completely wet by the aqueous
solvent and the only contribution to Fs comes from the
polymer network.
At first sight, such a crack requires some stickers to be

pulled out of the oil droplets and dangle free into the
solvent. But in fact a crack can be achieved at a much
lower energy cost corresponding to the lack of accessible
configurations of the polymers which face the crack sur-
face. These cracks always exist, in the fluid, due to equi-
librium thermal fluctuations. In the vicinity of a crack,
polymers do not cross the crack surface and therefore
lose roughly half of the configurations they would have
had if they were far from the crack surface, Fig. 1. So the
free energy cost associated to the crack is kBT ln2 per
active polymer. Therefore the surface energy can bewritten

as Fs ¼ fr
2d2

kBT ln2, where r is the average number of

hydrophobic stickers per droplet (connectivity), f is the
average fraction of bridging configurations for a given
polymer (f� 0:5 [18]), and d is the center-to-center dis-

tance between droplets d ¼ ½ð4�=3Þ=��1=3r0 (� and r0 are
the volume fraction and the oil droplet radius, respec-
tively). The typical value of Fs is extremely low and
roughly equal to 10 �Jm�2. Knowing the surface energy
Fs, we are able to calculate the critical stress �c [Eq. (3)],
above which the fracture occurs:

�c ¼
�

3

��2

�
f ln2

4

�
3
�2 r

3

r60

�
1=4ðkBTYÞ1=2: (4)

Since far from the percolation threshold the Young modu-
lus is roughly equal to Y ¼ 3nkBT where n ¼
3�rf=ð4�r30Þ, we eliminate � and r0 in Eq. (4) which
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can then can be approximated by �c ’ ð ½ðln23 Þ3 �
4�2 rf�1=4Y.

For typical values of f and r, the prefactor in remains of the
order of unity:�c � Y (far from the percolation threshold).
Figure 5 shows that the critical stresses measured during
the pendant drop experiment are in very good agreement
with the ones derived from our simple approach [Eq. (4)],
when the polymer concentration changes (r increases), at a
fixed volume fraction of droplets. This result confirms the
physical basis of the surface energy we have chosen. In this
respect, we checked that the measured critical stress is
mostly independent of the length of the sticker (twenty-
one versus 18 CH2 groups) and therefore of the adhesion
energy. We also obtained two other results consistent with
the classical picture of brittle fracture. (i) The Griffith’s
length is for all the samples of the order of 3 times the
distance between two oil droplets. (ii) The rupture occurs
in the linear regime: �c ’ 0:5Y, Fig. 5.

We have shown that the main ingredients of brittleness
of the fluid are bonds reversibility and fracture surface
energy resulting from the configurational entropy of the
bonds. These features being shared by most complex fluids
(associating polymers solutions [19], fibrillar networks
[20], supramolecular rubber [21], and actin gels reminis-

cent of cell cytoskeleton [22]), or even entangled solution
of wormlike micelles the brittleness of soft material might
be general.
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FIG. 5. Plot of the rupture stress coming from the pendant drop
experiments (circles) and the expected values from Eq. (4) as a
function of the connectivity r. f has been fixed to its expected
value: f ¼ 0:5. The only free parameter is � ¼ 0:9 (�� 1 as
expected). The vertical dashed line corresponds to the percola-
tion threshold (r ¼ 3). The inset gives the variation of the
experimental rupture stress with the Young modulus, corre-
sponding to the different connectivity. Note that the observed
deviation of �c from its linear dependence with Y observed at
small r, originates from the vicinity of the percolation thresh-
old [5].
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