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A theory of self-propelled particles is developed in such a way that the particles can be deformed from a

circular shape when the propagating velocity is finite. A coupled set of equations in terms of the velocity

and a tensor variable is introduced to represent the motion of a deformed particle. It is shown that there is a

bifurcation from a straight motion to a circular motion by increasing the propagating velocity. The

dynamics of assembly of the particles is studied numerically in two dimensions imposing a global

interaction such that the elongated particles tend to undergo an orientational order.
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Individual and collective dynamics of self-propelled
objects are one of the fundamental problems in nonequi-
librium physics. There have been a number of studies for
many years based on both deterministic dynamics [1,2] and
stochastic dynamics [3–8]. Recently the hydrodynamic
effects with and without internal degrees of freedom have
been investigated intensively [9–12]. Motion of a droplet
or a vesicle moving under the interaction with substrate has
been studied [13–15]. Experiments of reaction-driven pro-
pulsion [16,17] as well as a theory [18] and computer
simulations [19,20] have been carried out recently.
Excitable reaction diffusion systems have also exhibited
self-propelled domains [21] and have been analyzed theo-
retically [22–24]. These studies are motivated, on the one
hand, to gain an understanding of macroscopic self-
organization far from equilibrium and, on the other hand,
to clarify the mechanism of molecular machines in meso-
scopic or nanoscopic length scales.

All of the above studies except for the model with
internal degrees of freedom such as a dimmer model [12]
assume that the particle shape is unchanged during the
motion. In reality, however, many self-propelled objects
may change their shape depending on the velocity or the
interaction with other objects. Biological systems such as
living cells are one example [25,26]. The excitable reaction
diffusion system provides another example. The numerical
results in Ref. [21] clearly show that a two-dimensional
excited pulse changes its shape as the propagating velocity
increases.

The purpose of this Letter is to investigate the individual
and the collective motions of self-propelled deformable
particles. It will be shown that a competition between a
circular motion of individual particles and an orientational
order of their shape due to a global interaction causes a rich
variety of collective dynamics.

In order to represent the motion of a two-dimensional
deformable particle with a coupling between the velocity
of the center of the gravity and the deformation around a
circular shape, we introduce two variables. One is the
velocity v ¼ ðv1; v2Þ of the center of gravity and the other

is a tensor S�� with (�;� ¼ 1; 2). Suppose that the defor-

mation is weak and each deformed particle takes an ellip-
tical shape. We define a unit vector n along the long axis as
shown in Fig. 1. The tensor S��, which is the same as the

nematic order parameter [27], is given in terms of the
components of n by

S�� ¼ sðn�n� � 1
2���Þ; (1)

which is normalized as TrS ¼ 0 and the positive constant s
represents the degree of deformation from a circular shape.
The time-evolution equations for v and S�� can be

derived by a symmetry argument as follows. First of all,
the velocity should obey in its simplest case

d

dt
v� ¼ �v� � jv2jv� � aS��v�; (2)

where the repeated indices imply summation. The first and
the second terms are the same as those of an active
Brownian particle [4–6]. In particular, Schweitzer et al.
introduced a model system for active particles where the
velocity obeys a force balance equation which is coupled
with an internal energy depot [4]. After eliminating the
depot variable adiabatically and employing an expansion
in terms of v, one obtains Eq. (2) without the last term.
Note that when the energy input is smaller than the thresh-
old value, i.e., � < 0, the particle does not move, whereas
when � > 0, the particle undergoes self-propelled motion.
Throughout this Letter, we assume that � > 0. The combi-
nation S��v� with a scalar coefficient a as the last term of

FIG. 1. Self-propelled particle with the velocity v and the unit
normal n along the long axis.

PRL 102, 154101 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

17 APRIL 2009

0031-9007=09=102(15)=154101(4) 154101-1 � 2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.102.154101


(2) is the simplest way to constitute a vector variable in
terms of v and S��. Similarly, by symmetry, the tensor

v�v� � 1
2 jv2j��� should enter into the time-evolution

equation for S��

d

dt
S�� ¼ ��S�� þ b

�
v�v� � 1

2
jv2j���

�
; (3)

where � > 0 and b are constant. Since TrS ¼ 0, the area of
a particle is conserved.

By writing the velocity as v1 ¼ v cos�, v2 ¼ v sin�
and the unit normal as n1 ¼ cos� and n2 ¼ sin�, Eqs. (2)
and (3) are rewritten as

d

dt
v ¼ vð�� v2Þ � 1

2
asv cos2ð���Þ (4)

d

dt
� ¼ � 1

2
as sin2ð���Þ (5)

d

dt
s ¼ ��sþ v2b cos2ð���Þ (6)

d

dt
� ¼ �v2b

2s
sin2ð���Þ; (7)

where v and s should be positive. From Eqs. (5) and (7),
one obtains for c ¼ ���

d

dt
c ¼ � 1

2

�
�asþ bv2

s

�
sin2c : (8)

It is noted that only the difference c of the two angles
enters into the time-evolution equations due to the spatial
isotropy.

The above set of equations has a stationary solution.
Without loss of generality, we may assume that the velocity
is parallel to the x axis, i.e., � ¼ 0. There are two kinds of
solution depending on the sign of the parameter b. When b
is positive, the stationary solution is given by � ¼ 0, v2 ¼
v2
0 ¼ �=ð1þ BÞ, and s ¼ s0 ¼ bv2

0=�, where B �
ab=ð2�Þ. When b is negative, the solution is given by � ¼
�=2, v ¼ v0, and s ¼ �s0. In the latter case, the long axis
of the elliptical particle is perpendicular to the velocity
vector. In order to avoid a singular behavior of v0 for B �
�1, we hereafter assume ab > 0 (B> 0).

We apply a linear stability analysis of the stationary
solutions. It is readily shown that the stability is solely
determined by Eq. (8). The stationary solution is stable
when the coefficient on the right-hand side of Eq. (8) is
negative, i.e., abv2

0 � �2. Therefore the threshold is given

by

� ¼ �c ¼ �2

ab
þ �

2
: (9)

When � � �c, the stationary straight motion becomes
unstable. Note that this is valid for both � ¼ 0 and � ¼
�=2. This bifurcation threshold is indicated on the �-�
plane in Fig. 2.

Now we investigate the dynamics of a self-propelled
particle when the steady solution v0 and s0 of a straight
motion becomes linearly unstable. Here we make an ansatz
that there occurs a circular motion and explore the stability
both numerically and analytically. To this end, we put v ¼
vr, s ¼ sr and � ¼ !tþ 	=2 and � ¼ !t. Substituting
these into Eqs. (4)–(7), one obtains after some algebra

v2
r ¼ �� �

2
(10)

and s2r ¼ bv2
r=a, cos	 ¼ �=asr, and !2 ¼ ðab=4Þ�

ðv2
r � v2

cÞ, where vc ¼ �=ðabÞ1=2. The frequency ! con-
tinuously increases from zero at � ¼ �c. It is readily
shown that v is also continuous at the bifurcation point
� ¼ �c. The � dependence of v and ! is displayed in
Fig. 2(b).
In order to study the dynamics near the bifurcation � ¼

�c in more detail, we make a reduction of the variables.
Note that the coefficient of Eq. (8) vanishes at the bifurca-
tion point. Therefore, the variable c is slow near the
stability threshold compared to the other variables v and
s. This allows us to eliminate these variables by putting
dv=dt ¼ ds=dt ¼ 0 in Eqs. (4) and (6). As a result, Eq. (8)
becomes

d

dt
c ¼ Fðc Þ

¼ ��

�
�� �c þ ð�=2� �Þð1� cos22c Þ

�2�c þ �ð1� cos22c Þ
�
tan2c :

(11)

The function Fðc Þ is an odd function since both clockwise
and counterclockwise circular motions are equally pos-
sible. It is readily verified that Eq. (11) for ��=2< c <
�=2 is monostable for � � �c whereas it becomes bistable
for � � �c. Therefore the change of the stability occurs as
a pitchfork bifurcation.
The linear stability of the circular motion is studied

numerically by evaluating the eigenvalues of the linearized
equations of (4), (6), and (8). It turns out that the stability
threshold coincides with that of the straight motion given
in Fig. 2. This implies that in the region where the straight
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FIG. 2. (a) Stability diagram on the �-� plane for ab ¼ 0:5.
(b) The velocity v (full line) and the frequency ! (broken line)
as a function of � for a ¼ �1:0, b ¼ �0:5, and � ¼ 0:5. The
bifurcation occurs at �c ¼ 0:75.
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steady motion is stable, the circular motion is unstable and
vice versa.

Here we make a remark that we have carried out pre-
liminary numerical simulations in three dimensions ex-
tending the model equations (2) and (3) to arbitrary
dimensions and have found a stable helical motion of a
deformed particle.

It is mentioned that a model of self-propelled particle
which exhibits a circular motion has been introduced quite
recently by van Teeffelen and Loewen [28]. However, their
model does not have a bifurcation from a straight motion to
a circular motion shown above.

Now we explore the collective motion of the deformable
particles. We introduce a global coupling such that

d

dt
SðnÞ�� ¼ ��SðnÞ�� þ b

�
vðnÞ
� vðnÞ

� � 1

2
ðvðnÞÞ2���

�

� K̂ðSðnÞ�� � �SÞ; (12)

where �S ¼ ð1=NÞPnS
ðnÞ
�� and K̂ is the coupling constant.

The superscript nmeans the nth particle. The total number
of the particles is denoted by N. Equation (12) should be
coupled with Eq. (2) in which v� and S�� are replaced,

respectively, by vðnÞ
� and SðnÞ��. The last term in Eq. (12) with

a positive value of K̂ implies that the elliptical particles
tend to make an orientational order. It is mentioned that an
orientational order has been studied in self-locomoting
rods which are not deformable [29].

We have investigated the motion of the particles numeri-
cally in the situation such that individual particles undergo

a circular motion when K̂ ¼ 0. The parameters are fixed as
a ¼ �1:0, b ¼ �0:5, � ¼ 0:5, and � ¼ 1:0, whereas the

interaction strength K ¼ K̂=� is varied. The number of the
particles is chosen as N ¼ 30 in most of the numerical
simulations.

Figure 3 displays the trajectory of a particle for four
different values of K. When K is small as K ¼ 0:14, the
motion is almost circular and localized as in Fig. 3(a). A
transition to a delocalized state occurs around atK ¼ 0:15.
A random drift motion appears as in Fig. 3(b). For larger
values of K, a random but ballistic motion becomes domi-
nant as shown in Fig. 3(c). When K exceeds 0.30, each
particle exhibits a straight motion as displayed in Fig. 3(d).

In order to analyze the above behavior of the collective
motion, we have evaluated the Lyapunov exponent L de-
fined through the relation

expðLðt� t0Þ=
Þ ¼
XN
n¼1

f½vðnÞðtÞ � v̂ðnÞðtÞ�2

� det½SðnÞðtÞ � ŜðnÞðtÞ�g; (13)

where 
 ¼ 2�=! ¼ 8
ffiffiffi
2

p
� � 35:5 for the present set of

the parameter values. Small noises of the order of 10�4 are
added for the hat-marked variables at t0 ¼ 3200. The ex-
ponent L is obtained by changing the value of K and is

shown in Fig. 4(a). The Lyapunov exponent is almost zero
for K � 0:14 and K � 0:3, whereas it is definitely positive
for 0:15 � K � 0:29. Therefore we conclude that the mo-
tion is chaotic in this parameter regime. In Fig. 4(a), the
data of 100 independent runs are plotted. The vertical bars
indicate the typical scatter of the data. The reason why the
exponent is not negative but zero in the nonchaotic region
is that there is a zero eigenmode in the time-evolution
equations due to the rotational invariance.
In order to quantify the distinct dynamics shown above,

we have calculated the mean square displacement W aver-
aged over 30 particles

W ¼
�
1

N

XN
n¼1

�Z t

0
vðnÞðt0Þdt0

�
2
�
1=2

: (14)

Since there is a crossover from a random drift to a ballistic
motion of a particle as is evident in Fig. 3, we assume the
time dependence of W for sufficiently large values of t as

W ¼ 2Dðt=
Þ1=2 þ Bt=
: (15)

The diffusion constant D defined through the relation (15)
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FIG. 3. Trajectory of a particle for (a) K ¼ K̂=� ¼ 0:14 and
for the time interval �t ¼ 5000, (b) K ¼ 0:16 and for �t ¼
5000, (c) K ¼ 0:28 and for �t ¼ 5000, and (d) K ¼ 0:32 and for
�t > 2000. Note that (c) and (d) cover a wider area than (a) and
(b).
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FIG. 4. (a) Lyapunov exponent as a function of the interaction
strength K. (b) Diffusion constant D (plus) and the coefficient B
(cross) in Eq. (15) as a function of the interaction strength K.
These are obtained from 100 independent runs.
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is plotted in Fig. 4(b) as a function of the interaction
strength K. It is clearly seen that the diffusion constant
starts to increase in the chaotic region of K � 0:15 and
becomes zero for K � 0:3, whereas the value of B starts to
increase atK � 0:25 as shown in Fig. 4(b) indicating that a
ballistic-type behavior appears.

In summary, we have introduced and studied a kinetic
model for deformable self-propelled particles. It is found
that an isolated particle exhibits a bifurcation such that a
straight motion becomes unstable and a circular motion
appears. Here we make a remark that a similar bifurcation
is shown to exist in a model system in Ref. [30], but a
circular motion appears in an unrealistic parameter region.

Assembly of the elliptically deformed particles exhibits
curious dynamics when the global orientational coupling is
introduced. It is found that three phases emerge by increas-
ing the interaction strength, i.e., the localized phase, delo-
calized chaotic phase, and the phase of the ballistic motion.
The change between chaotic and nonchaotic dynamics
occurs as a sharp transition, whereas the change from the
diffusion to the ballistic motion is a gradual crossover. The
final ballistic phase can be understood easily. When the
direction of the velocity and hence the orientation of each
particle are random, the average �S is zero in Eq. (12) so that
this equation is decoupled for each particle. The damping

constant � is renormalized as �þ K̂ and hence, for large

values of K̂, the system enters in the phase of a straight
motion in Fig. 2(a).

It is expected qualitatively that the chaotic dynamics in
the intermediate strength of the coupling constant K origi-
nates from a competition between the circular motion of
individual particles and the tendency of the orientation
order. The coexistence of clockwise and counterclockwise
motions plays a crucial role for the chaotic dynamics since
it tends to interrupt the orientational order and to cause a
frustration. In this respect, noise effects might be interest-
ing. When noises are strong enough, they should switch
randomly from a counterclockwise motion to a clockwise
motion and vise versa. In order to examine this, we have
added a noise term � in Eq. (2), which obeys the Gaussian
white statistics, i.e., h�ðtÞi ¼ 0 and h�ðtÞ�ðsÞi ¼ 2M�ðt�
sÞ with a positive constant M, and have carried out nu-
merical simulations for the parameters a ¼ � ¼ 1 and b ¼
� ¼ 0:5. The switching behavior is found to be frequent for
M � 0:005.

Finally, it is noted that our preliminary numerical simu-
lations have verified that the above property of the complex
collective dynamics is essentially unchanged when an
attractive interaction is introduced, whose strength is pro-
portional to the distance of a pair of particles. The full
account of these results together with the stochastic dy-
namics under noises and the motion in three dimensions
will be published elsewhere in the near future.
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