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We show by experimental measurements and theoretical analyses that there exists a pattern transition

from optical modulation instability to transverse instability in nonlinear media. An input coherent beam

propagating in the photorefractive crystals is observed to break up into stripe filaments at a first threshold

voltage. By modeling the periodic strip filaments as cnoidal waves, we demonstrate that a second

threshold voltage for forming dot filaments comes from the transverse instability, resulting in a good

agreement with the experimental data.
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Modulation instability (MI) is a universal signature of
symmetry-breaking phenomena, which has been studied in
different areas of nonlinear systems as a simple means to
observe the manifestation of strongly nonlinear effects in
nature [1–3]. Because of MI, a small perturbation in the
amplitude or phase could cause the input waves to grow
exponentially. The MI process is thus closely related to the
pattern formations, including chaotic [4,5], solitary [6],
and turbulence waves [7], in various area of physics
[8,9]. In bulk Kerr media, MI causes a random dislocation
of extended beams, which subsequently undergo a cata-
strophic collapse. Another instability similar to MI is the
transverse instabilities (TI) of spatial optical solitons asso-
ciated with the growth of transverse modulations of quasi-
one-dimensional bright and dark soliton stripes. In particu-
lar, this symmetry-breaking instability turns a bright soli-
ton stripe into an array of two-dimensional filaments [10]
and bends a dark soliton stripe that evolves into pairs of
optical vortices of different polarities [11]. Consequently,
the transverse instability sets severe limits on the observa-
tion of spatial solitons in bulk media [12,13]. In order to
demonstrate spatial-temporal solitons in higher dimen-
sions, several different physical mechanisms have been
proposed for suppressing the soliton transverse instabil-
ities, including the effect of partial incoherence of light
[14], anisotropic nonlinear response [15], and nonlocal
nonlinearity in photorefractive crystals [16].

Recently, it was found that MI occurs not only with
coherent beams. With a noninstantaneous response in the
nonlinear medium, observations of MI with an incoherent
beam are possible as long as the phase fluctuations of the
beam are faster than the response time of the material [17].
Later on, a partially incoherent optical vortex was demon-
strated in experiments with a self-focusing nonlinear media
[18]. The spatiotemporal optical MI of coherent lights in
noninstantaneous nonlinear media has been studied by one
of the authors [19,20]. The modulated field evolves into
periodic stripes with a small nonlinearity (biased voltage).

No matter for coherent or incoherent beams, most of the
studies on MI have mainly adopted an approach regarding
ð1þ 1ÞD solutions. As a first step, this approximation is
sufficient to explain the major effects. But as shown later
for a fixed input intensity, in contrast, by increasing the
biased voltage patterns in forms of dot filaments are ob-
served under the high nonlinearity limit.
Although the orientation of MI stripes is randomly

selected by the vacuum noises or material defects [17],
the delayed onset of ð2þ 1ÞD filamentations via ð1þ 1ÞD
stripe solutions cannot be covered. In Ref. [21], Gütlich
et al. attribute this phenomenon to the anisotropy-induced
secondary modulation instability. However, if this aniso-
tropic effect is dominant, the MI stripes shall be orientated
with a certain direction that possesses the highest MI
growth rate. In this Letter we show that even in an isotropic
nonlinear medium a secondary threshold voltage for stripe
filaments to break up also exists. By modeling the formed
MI stripe filaments as periodic cnoidal waves [22–25], on
top of which we apply a TI analysis. The results show that
we have a larger spatial filament vector in another axis
even at a lower bias voltage with a secondary threshold
voltage due to the transverse instability. Then the instabil-
ities in the two axes possess almost the same value of
spatial wave numbers at a higher bias voltage, resulting
in a good agreement to experimental observations.
In the experiment, as illustrated in Fig. 1, we split a

515 nm cw Yb:YAG laser light into two beams using a
polarizing beam splitter (PBS). The extraordinarily (sig-
nal) and ordinarily (background) polarized beams are col-
limated into a strontium-barium niobate (SBN) crystal
separately to control the degree of saturation. The SBN
crystal is 5 mm in length and 5 mm in thickness along the c
axis, which has an effective electro-optical coefficient
350 pm=V. Consequently, the effective nonlinear refrac-
tive index due to the photoinduced space charge field is
linearly proportional to an external DC field as �n ¼
�n30reffjEextj=ð1þ I=IsÞ, where reff / r33 for a SBN crys-
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tal [26,27]. The ratio of the input beam intensity (I) to the
background beam intensity (Is) is kept at 10 for different
operations. A charge-coupled device (CCD) camera is
placed after an imaging lens to capture the self-organized
optical patterns at the output plane, with a 8 mm� 8 mm
CCD chip size and a 330 �m� 330 �m field of view.

In Fig. 2, we demonstrate series of optical patterns
recorded by the CCD camera at the output plane for input
optical intensities at I ¼ 65, 96, and 190 mW=cm2, re-
spectively. The measured patterns are formed in the fol-
lowing scenario. In the first row, from a plane wave input
only uniform patterns with some neglected fluctuations in
the image system are shown in the output plane at a very
small bias voltage. Later, stripe filaments in the periodic
structures are first developed with a random orientation.
Subsequently, these periodic waves split and break into
filaments as a result of transverse instability, to be quanti-
tatively verified by our proposed model later. For a given
crystal length, sufficient nonlinearities controlled by the
applied voltage across the crystal along the c axis are
required for waves to evolve into observable patterns. As
shown in the second and third rows of Fig. 2, it is straight-
forward to expect that there should exist separated thresh-
old voltages for stripe- and dot-filament patterns. At a
higher bias voltage, in the last two rows we demonstrate
the formations of optical turbulence patterns.

To explain the pattern transition from MI to TI, here we
model the fields propagating in a SBN crystal by using the
nonlinear Schrödinger equation (NSE) with a noninstanta-
neous isotropic photorefractive response [20], i.e.,
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where the spatial coordinates are normalized to 1=k with k
being the wave number of the incident field, and A is
normalized to

ffiffiffiffi
Is

p
given that Is is the saturation intensity

(as the background beam). The nonlinear strength � is
assumed to be linearly dependent on the external dc field,
� is the time constant of the system, and the nonlinear
response function is given as F ¼ 1=ð1þ jAj2Þ.

For MI, we use a plane wave as the input and study the
corresponding instability [20]. As a consequence of MI, the
plane waves turn into a chain of stripes at a spatial fre-
quency with the maximum field growth rate along a ran-
domly selected direction. Before symmetry-breaking
instability in higher dimensions deteriorates the optical
patterns severely, the stationary periodic waves can be
formed in nonlinear materials known as cnoidal waves,
which was first introduced by Kortweg and de Vries in their
works of cnoidal wave theory [28]. Recently, the stability
of multicomponent photorefractive cnoidal waves were
formulated with a drift nonlinear response [29]. As for
the strip filaments formed by MI in the periodic structures,
for TI, we adopt this concept by assuming a preformed
cnoidal wave on top of fully developed MI patterns as
solutions to the NSE, i.e., A0 ¼ �ðxÞe�i�z, where �ðxþ
LÞ ¼ �ðxÞ and L is the spatial period. The stationary
cnoidal wave solution A0 adopted here is of cn-type for
that with a saturable nonlinearity only cnoidal waves of

FIG. 2 (color online). The optical intensity patterns of a
coherent beam at the output plane through a nonlinear crystal
at different bias voltages (shown in the left column) and different
input intensities: (a)–(e) 65 mW=cm2, (f)–(j) 96 mW=cm2, and
(k)–(n) 190 mW=cm2. The 2D Fourier transform of the experi-
mental measurement in (h) is shown in (o), with the correspond-
ing directions of wave vectors kx and ky indicated.

FIG. 1. Illustration of our experimental setup, where PBS is
the polarization beam splitter, SBN-60 is the photorefractive
crystal, HWP is a half-wave plate, L1 and L2 are two plano-
convex lenses used for beam collimation, M1 and M2 are two
reflecting mirrors, and L3 is an imaging lens to collect pattern
images into the CCD camera.
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cn-type are stable when its power flow exceed a certain
threshold [30]. Then again we calculate the instability
spectrum of cnoidal waves in the NSE by using the stan-
dard linear stability analysis, i.e., A ¼ A0 þ�A, where

�A ¼ ½ðvþ iwÞeikyyþi�zþi�t

þ ðv� þ iw�Þe�ikyy�i��z�i�t�e�i�z

with the transverse wave number ky and the frequency of

the perturbed field �. Then a set of linear coupled equa-
tions can be obtained by linearizing the NSE in Eq. (1), i.e.,

� ~w ¼ ½L1 � 1
2k

2
y�v; and �v ¼ ½L0 � 1

2k
2
y� ~w; (2)

where ~w ¼ iw, L0 ¼ �þ 1
2r2

? þ F0, L1 ¼ L0 þ 2F0
0
A2
0

i�þ1 ,

F0 ¼ FðjA0j2Þ, and F0
0 ¼ dF

djAj2A¼A0

. By expansions at the

neutral modes [31,32],

~w ¼ ~w0 þ � ~w1 þOð�2Þ;
and v ¼ v0 þ �v1 þOð�2Þ; (3)

in which ~w0 ¼ A0 and v0 ¼ 0. We readily obtain v1 ¼
ðL0 þ 2F0

0
A2
0

i�þ1Þ�1 ~w0 after substituting Eq. (3) into the linear-

ized equations in Eq. (2) to the first order of �. The
dependence of the TI growth rate of cn-type cnoidal waves
to the transverse wave number ky can be derived asymptoti-

cally in the following,

�2 ¼ � 1

2

ðA0; A0Þ
ðA0; L

�1
1 A0Þ

k2y � 1

4
k4y; (4)

where the operation ðw; vÞ � R1
�1w�vdx, and we have a

simple formula in the second term as the case derived for
the cubic nonlinearity [32]. The imaginary part of � con-
tributes to the field growth rate which we denoted as hy
hereafter.

Figure 3(a) shows the spatial wave number kx with the
maximum field growth rate hx of the MI for plane waves in
a photorefractive material at I=Is ¼ 10 and �� ¼ 0 for
different nonlinearities. It is seen that both the spatial wave
number and field growth rate increase with the nonlinear-
ity. Despite the fact that the growth rate decreases when��
increases in the noninstantaneous medium, the spatial
wave number kx with a maximum growth rate is indepen-
dent of�� [20]. Then a cn-type cnoidal wave, shown in the
inset of Fig. 3(c), is developed at these spatial frequencies
associated with the maximum field growth rate, i.e., L ¼
1=kmax

x , and the corresponding transverse instability is
demonstrated in Fig. 3(b) for �� ¼ 0. It is clearly seen
that the maximum growth rate for the cnoidal wave TI is
much smaller than that of the plane wave MI at the same
input intensity and nonlinearity. However, the value of
spatial wave number ky approaches kx even we use an

isotropic model here. This indicates that fully evolved
patterns are isotropically self-organized and the density
of dot filaments increases at a higher nonlinearity, as
supported by experimental results in the fourth row of

Fig. 2 and in Fig. 3 by the spatial and momentum distri-
butions, respectively. In addition, for a finite crystal length,
there shall exist two threshold nonlinearities for observed
stripe- and dot-filament patterns to develop, due to differ-
ent maximum growth rates in the two axes. In Fig. 3(c), we
show the TI spectra of cnoidal waves at � ¼ 1 and I=Is ¼
10 for different frequency-time-constant products, ��.
Very similar to the plane wave MI [20], the growth rate
of cnoidal wave TI decreases when �� increases for the
noninstantaneous response of the photorefractive crystals.
And again the spatial wave number with a maximum
growth rate is independent of �� with the asymptotic
approximation as,

kmax
y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1

2ðA0; A0Þ=ðA0; ðL0 þ 2F0
0A

2
0Þ�1A0Þ

q
: (5)

To manifest the insights of the transition from MI to TI,
in Fig. 4, we analyze the two-dimensional spatial spectrum
of measured patterns by using a 2D Fourier transformation
of experimental data obtained in Fig. 2. The threshold
nonlinearity (voltage) in the kx can be read from the fitting
curves in Fig. 4 as 0.19, 0.117, and 0.067 kV for I ¼ 65, 96
and 190 mW=cm2, respectively. While in the ky, we have

0.23, 0.17, and 0.108 kV as a second threshold voltage,
separately. In the spectrum, it is found that at a higher

FIG. 3. (a) The spatial wave numbers with the maximum
growth rate of plane wave MI (kx, solid line) and cnoidal
wave TI (ky, dashed line), and (b) the corresponding growth

rates for MI (hx, solid line) and TI (hy, dashed line) versus

different nonlinearities in isotropic photorefractive crystals at
�� ¼ 0 and � ¼ 1. (c) Direct numerical simulations of trans-
verse instability spectra for cn-type cnoidal waves with a non-
instantaneous response function, i.e., the frequency-time-
constant products �� are 0 (solid), 1 (dashed), and 4 (dotted),
respectively. The analytical results based on the asymptotic
expansion method are marked by squares, triangles, and circles
accordingly. The inset in (c) denotes the periodic stationary
solution A0.
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nonlinearity the spatial wave numbers kx and ky almost

have the same value where uniform dot-filament patterns
are observed. In contrast, while the nonlinearity is low, the
two wave numbers differ with different threshold voltages.
Concerning different optical intensities, the spatial wave
vectors experience very little variations in their tendencies
and magnitudes because of a notable fact that they all share
the same (input)/(background) ratio, I=Is ¼ 10, and repre-
sent the same normalized wave functions in the photore-
fractive model used in Eq. (1). Nevertheless, the threshold
nonlinearities drop at a strong optical intensity due to the
fact that the system time constant, �, also drops accord-
ingly [21]. In accordance with a lower growth rate in TI and
associated with a broaden TI spectrum, it is hard to build up
transverse patterns in such a case.

It is well known that it is almost impossible to see the
evolutions of an input plane wave evolving in forms of
stripe filaments to dot filaments just by a perturbative
analysis or a direct numerical simulation. On the contrary,
the approach we used here seems unnatural at a first glance
for assuming a periodic wave as the MI pattern. As long as
periodic strip filaments form, our proposed cnoidal wave
model to explain the pattern transitions from MI to TI
works. It turns out that the preformed periodic waves on
top of MI patterns give us a satisfied comparisons with
experiments not only qualitatively but also quantitatively.
And the results we showed theoretically and experimen-
tally here can also be useful for studying spatial-temporal
pattern formations in higher dimensions for optical bullets
[33,34], fluid dynamics [35], and plasma physics [36].

In summary, the formation of optical dot-filament pat-
terns in photorefractive crystals is explained by our two
stage MI to TI model in ð2þ 1ÞD. We show that the spatial
wave number of the transverse pattern is independent of
the optical intensity and there exist two threshold nonline-
arities (voltages) that clearly distinguish the MI and TI
formations, respectively. With direct numerical simula-
tions and asymptotic analyses on the modeling of plane
wave MI and cnoidal wave TI, the reported pattern tran-
sitions are supported by experimental demonstrations.
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FIG. 4 (color online). Spectra of transverse patterns obtained
from experimental data for (a) kx and (b) ky. Circles and squares

markers accompanied by the fitted curves in black, red, and blue
refer to optical intensities I ¼ 190, 96, and 65 mW=cm2, re-
spectively.
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