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The optical properties of textured metallic surfaces are governed by the scattering of surface plasmon

polaritons (SPPs) and of quasicylindrical waves (CWs), which are both excited by the nano-objects

located on the surface. We study here a fundamental scattering process of these fields, namely, the

cross conversion of a CW into a SPP. We first show that this inelastic process is inevitable in multi-nano-

object ensembles and then propose a procedure enabling a rigorous calculation of the cross conversion

scattering coefficients. Additionally, by mapping this intricate process to a much simpler one, we derive

general and simple expressions for the cross conversion efficiency. All predictions are carefully supported

by fully vectorial computational results.
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Metallic surfaces that are nanotextured play a central
role in the emerging field of plasmonics [1]. At a micro-
scopic level, their macroscopic (collective) optical proper-
ties are governed by two distinct elementary waves that are
excited by individual nano-objects and then propagate on
the surface, before eventually interacting with nearby
nano-objects: the well-known surface plasmon polariton
(SPP), i.e., a surface mode [1], and a residual quasicylin-
drical wave (CW), i.e., an electromagnetic field with ra-
diative and evanescent components that persists along the
surface over a few-wavelength propagation distance [2–5].
For noble metals, both waves are equally excited at visible
frequencies, but at longer wavelengths, the CW rapidly
becomes the preponderant field [2,6]. The SPP excitation
or scattering by individual or arrayed nano-objects has
been studied extensively and is well comprehended nowa-
days [1,7–10]. Just as SPPs, CWs participate in the energy
transfer between the nano-objects, but unfortunately, vir-
tually nothing is presently known on their scattering prop-
erties [2–6]. In this Letter, we remove this deficiency and
provide the first study of a fundamental CW-scattering
process, namely, the inelastic scattering of CWs into
SPPs. We show that this process virtually exists for all
metallic textured surfaces, we evidence that it impacts the
optical property of the surfaces especially at visible fre-
quencies, and we further discuss how its efficiency scales
with the energy of the light.

Because SPPs are modes of the metal interface, their
scattering coefficients obey reciprocity relationships and
can be calculated through normal mode concepts [9,10].
CWs are not modes (they are a superposition of evanescent
and propagation fields), and the analysis of their scattering
coefficient is much more intricate conceptually. We start

with a proof of existence for the cross conversion phe-
nomenon by numerically studying the SPP-generation
rate of a groove doublet on a metal surface. Thanks to a
simplified coupled-wave model, we derive a simple proce-
dure to rigorously calculate the cross conversion coeffi-
cients. We further map the inelastic problem into a much
simpler one, which involves only purely elastic SPP scat-
terings. This allows us to derive general expressions for the
cross conversion coefficient and to directly apply all the
available knowledge (including the theoretical and numeri-
cal tools) on SPPs to the inelastic scattering problem.
CW-to-SPP conversion is inherent to multiple scattering

and can be virtually observed whenever a set of subwave-
length particles is arrayed on a metal surface. To evaluate
the importance of the cross conversion, we consider the
simplest system that sustains such a conversion, namely,
a groove doublet on a metallic surface [see Fig. 1(a)].
Figure 1(b) shows the scattered magnetic field for a nor-
mally incident plane wave (� ¼ 974 nm) polarized along
the x axis. The fully vectorial numerical calculations are
performed with an aperiodic Fourier modal method [11]
(a-FMM), using the frequency dependent gold permittivi-
ties "g tabulated in [12]. Hereafter, we consider the field

scattered on the right side of the doublet on the surface
(z ¼ 0), see Fig. 1(c). The total field (solid-red curve) is
composed of a SPP (dashed-blue) and of a CW (dotted-
black), which are codirectionally launched out. The SPP
contribution is extracted from the total field by using the
orthogonality between the SPP mode and the radiative
modes, and by difference, the CW contribution is obtained
[2,10]. The decomposition allows us to calculate a SPP-
excitation efficiency, defined as the fraction of the incident
power, which is directly impinging onto the groove aper-
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tures and which is converted into the two SPPs launched on
both sides of the doublet. Hereafter the efficiency will be
normalized by that associated to a single groove. Using the
a-FMM, we have repeatedly calculated the efficiency by
varying the groove separation distance d in the interval
w=2< d< 4 �m.

The normalized SPP-generation efficiencies � are
shown in Fig. 2 with black-solid curves for two groove
depths, h ¼ 0:1� and 0:2�. They exhibit an oscillatory
fringe pattern with a high contrast. The pattern can be
essentially understood as resulting from the interference
between the two SPPs generated by the two grooves.

However, as will be shown hereafter, this pure SPP
description [shown with the blue circles in Figs. 2(a)
and 2(b)] cannot predict the transient regime observed
for small d’s. Before reaching a stationary behavior for
d > 4 �m (not shown), the maxima of � present an im-
portant falloff in Fig. 2(a) or riseup in Fig. 2(b). The
transient is a direct signature of CW-to-SPP cross conver-
sions occurring at the grooves, and as will be shown here-
after, quantitative information on the amplitude and on the
phase of the cross conversion coefficients can be gained by
analyzing the fine details of the fringe pattern.
To explore this question, we next develop a coupled-

wave model that takes into account the individual CWs
generated by each groove and their further conversions into
SPPs by scattering at the other groove. But before, let us
consider the magnetic field HðxÞ scattered on the surface
by a single groove illuminated by a normally incident plane
wave. This field (Fig. B in [2]) can be accurately described
as a combination of a SPP and of a CW,

HðxÞ ¼ �SPH0 expðikSPxÞ þ �CWH0ðx=�Þ�m expðik0xÞ;
(1)

where kSP ¼ k0½"g=ð"g þ 1Þ�1=2 is the complex SPP

propagation constant, k0 ¼ 2�=�, m � 0:5 is the attenu-
ation exponent of the CW, and H0 is a positive normal-
ization constant [2]. Equation (1) defines two complex
scattering coefficients, �SP and �CW, which represent the
relative weights of the SPP and the CW contributions to the
total field at a single-wavelength distance from the groove.
With this notation in mind, we now derive a set of

coupled-wave equations for the groove doublet. Let us
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FIG. 2 (color online). Normalized SPP-generation efficiency �
as a function of the groove separation distance. A quantitative
agreement is achieved between the a-FMM data (solid-black)
and the model predictions of Eq. (4) (red dots), while the pure
SPP model (blue circles) fails at predicting the transient regime.
The results are obtained for w ¼ 0:2� (� ¼ 974 nm) and for
h ¼ 0:1� (a) and h ¼ 0:2� (b). For d > 4 �m, other calcula-
tions show that the oscillation amplitude remains essentially
constant.
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FIG. 1 (color online). Electromagnetic field scattered by a
groove doublet under illumination at normal incidence by a
plane wave polarized along the x axis. (a) Schematic of the
groove-doublet configuration, including the geometrical parame-
ters w, h, and d, and the electromagnetic quantities A, B, and �
used in the model. (b) Scattered magnetic field ReðHÞ. The
incident and specularly reflected plane waves have been removed
for the sake of clarity. (c) Magnetic field scattered on the air-gold
surface (z ¼ 0) on the right side of the doublet. The total field
(solid-red) is composed of a SPP mode (dashed-blue) and of a
CW (dotted-black). The calculations are performed for h ¼
0:1�, w ¼ 0:2� and d ¼ � (� ¼ 974 nm, "g ¼ �44:02þ
3:24i).
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denote by A and B the unknown SPP modal coeffi-
cients scattered in the positive and negative x directions
[Fig. 1(a)]. Neglecting high-order cross conversion pro-
cesses, we have

A ¼ �SP þ rSPBuþ rc�CWv: (2)

A results from three contributions, a direct excitation by the
left-handed groove under the plane-wave illumination, an
elastic SPP back reflection at the same groove, and an
inelastic backscattering of the CW initially originated by
the illumination of the right-handed groove. Similarly for
the generation coefficient � of the SPP launched on the
right side of the doublet [see Fig. 1(a)], we may write

B ¼ �SP þ tSPAuþ tc�CWv: (3)

In Eqs. (2) and (3), u ¼ expðikSPdÞ and v ¼ ðd=�Þ�m �
expðik0dÞ are the SPP and CW phase delays, rSP and tSP
are the SPP elastic reflection and transmission coefficients
at a groove, and rc and tc are the unknown cross conversion
coefficients associated to the inelastic scattering of an
incident CW into reflected and transmitted SPP modes.
Indeed, as will be confirmed hereafter, rc and tc (like the
elastic coefficients rSP and tSP) may depend on the groove
parameters, h or w, but are independent of d. At normal
incidence, B ¼ A and from Eqs. (2) and (3), one obtains

� ¼ �SP

�
1þ utSP

1� urSP

�
þ �CWv

�
tc þ rc

utSP
1� urSP

�
:

(4)

As expected, the normalized SPP efficiency given by � ¼
j�j2=j�SPj2 results from two contributions. The first one
(the first term on the right side of the equation) corresponds
to a contribution that solely depends on SPP modes (earlier
called the pure SPP model), and the second one is due
to the additional CW cross conversion process under analy-
sis. The two contributions may sum up constructively
[Fig. 2(a)] or destructively [Fig. 2(b)] for different groove
parameters since the quantities in Eq. (4) (except u and v)
depend on the groove parameters.

To extract the inelastic scattering coefficient, we adopt a
two-step procedure. We first calculate the elastic scattering
coefficients rSP and tSP with the a-FMM. This step does not
pose any problem since many numerical tools (like ours)
may provide these modal scattering coefficients. In a sec-
ond step, using Eq. (4), we fit the calculated � values over
the full interval of separation-distances (w=2< d<
4 �m) by optimizing the unknown complex parameters
rc and tc. As shown in Fig. 2, the model well captures the
initial transient zone and a quantitative agreement is ob-
tained between the calculated data (black curve) and the
fitted curve (red dots) evaluated for the optimized
parameters.

The two-step procedure provides a rigorous numerical
approach to calculate the cross conversion coefficients. In
principle, by repeatedly using it for different nanoparticle

geometries, one should be able to study the impact of
various physical parameters on the cross conversion effi-
ciency. However, although viable this would be burden-
some and, more importantly, this would not be helpful for
understanding why some particles may offer efficient cross
conversion and some others not. As we shall see, it is
possible to gain much more insight by mapping the cross
conversion coefficient (including their phase) into those of
a much simpler problem.
For that let us consider two elementary scattering prob-

lems at the same frequency. In the first problem, a SPP is
impinging onto a subwavelength object (a groove or a ridge
for instance). The second problem corresponds to the
scattering of a CW by the same object. Although they are
very different by nature (the SPP is a mode, the CW is not,
the damping characteristics are different, and so on), the
CWand SPP fields at the metal surface (z ¼ 0) share many
properties (they have nearly identical propagation con-
stants, similar penetration depth in the metal, and so on),
and in addition, they may have identical fields on the object
under adequate normalization. Referring to a form of
causality principle where equal causes have equal effects
[13], one expects that the scattered fields of the two dif-
fraction problems are nearly identical: same scatterings
into free space, same excitations of the groove Fabry-
Perot resonances and in the context of the cross conversion,
one should expect that the SPPs contained in the two
scattered fields be the same. Formally, we write

rc � rSP; tc � tSP � 1: (5)

These equations are remarkably simple. Their validity has
been thoroughly verified for different particle geometries
(grooves and ridges) over a broad spectral range, from the
visible to the near-infrared. The results obtained for
grooves with w ¼ 0:2� and h ¼ 0:1� are summarized in
Figs. 3(a) and 3(b). The rc and tc coefficients (plusses) are
obtained by applying the rigorous double-step procedure at
every wavelength �, while the rSP and tSP coefficients
(black-solid curves) are straightforwardly calculated using
the a-FMM. As we vary the wavelength, we also scale all
geometrical dimensions. Clearly, Eq. (5) is quantitatively
verified, even for situations relying on very strong scatter-
ings at visible wavelengths.
Because they bridge an intricate inelastic scattering

problem to a much simpler elastic one, Eqs. (5) are mean-
ingful. They are conceptually interesting since they attach
scattering coefficients to waves that are not normal modes.
They are useful since they considerably ease the calcula-
tion of cross conversion strengths, by replacing the intri-
cate double-step procedure by direct calculations of SPP
scattering coefficients. Finally, they are also intuitively
helpful. For example, they provide important scaling be-
haviors, such as the frequency dependence [14] of the cross
conversion coefficients, which is not a priori intuitively
clear. Thanks to Eq. (5), one may instead think in terms of a
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pure elastic scattering problem, and by noting that the
electromagnetic field of a normalized SPP mode on the

interface scales as j"gj�1=4, one easily infers that the cross

conversion efficiencies jrcj2 and jtcj2 both scale as j"gj�1.

This scaling law has been quantitatively checked numeri-
cally by comparing the wavelength dependence of the
metal permittivity (solid-green curve) with the efficiencies
deduced from the double-step procedure (plusses and
squares), see Fig. 3(c). The comparison is performed for
groove (black marks) and ridge (red marks) doublets,
showing that the scaling law is a general property that is
not restricted to specific particle geometries. Additionally,
it is noteworthy that the j"gj�1 dependence for the cross

conversion efficiency largely differs from those associated
to the CW and SPP-generation efficiencies, j�CWj2 and

j�SPj2, which, respectively, vary as j"gj1=2 and j"gj�1=2 due

to the distinct excitation behaviors of the two waves [2,10].
In conclusion, we have theoretically studied a new pro-

cess on metal films, namely, the cross conversion of a CW
into a SPP mode. We have provided a direct proof of
existence, derived general simple expressions of the cross
conversion efficiencies, and shown that these efficiencies
strongly depend on the metal conductivity. We believe that

the cross conversion is a fundamental process that impacts
the optical property of many (if not all) textured metallic
surfaces. For large and periodic particle ensembles, in
contrast to the doublets studied here, multiple cross con-
versions occur and strong constructive or destructive inter-
ference can be anticipated. Since our current understanding
of the electromagnetic properties of textured metallic sur-
faces relies on microscopic models that largely ignore the
CWs [6], we expect that this analysis will be helpful for
ultimately understanding the dynamics and behavior of
plasmonic systems.
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FIG. 3 (color online). Wavelength dependence of the cross
conversion scattering coefficients rc and tc. (a) and (b) Test of
Eq. (5) for grooves (w ¼ 0:2� and h ¼ 0:1�). The plots compare
the cross conversion coefficients, rc and tc (red plusses), ob-
tained with the double-step procedure and the elastic scattering
SPP coefficients, rSP and tSP (solid curves), calculated with the a-
FMM. (c) The cross conversion efficiencies jrcj2 (plusses) and
jtcj2 (squares) scale as the inverse of the metal permittivity
j"gj�1 shown with the green solid curve. The black (respectively

red) marks are obtained for groove (respectively ridge) doublets
using the double-step procedure. The ridge widths and heights
are 0:2� and 0:1�, respectively.
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