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We report the observation of almost perfect light tunneling inhibition at the edge and inside laser-

written waveguide arrays due to band collapse. When the refractive index of the guiding channels is

harmonically modulated along the propagation direction and out-of-phase in adjacent guides, light is

trapped in the excited waveguide over a long distance due to resonances. The phenomenon can be used for

tuning the localization threshold power.
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The precise control of wave packet tunneling by external
driving fields is of major relevance in many branches of
physics, such as superconducting quantum interference
devices, spin systems, multiquantum dots, and cold atoms
in optical traps [1,2]. Two different phenomena attract
particular interest: dynamic localization in longitudinally
periodic potentials [3–5] and driven double-well potentials
[6,7] which are well suited to investigating tunneling con-
trol. Optical settings provide a new system to explore
tunneling phenomena [8,9] as well as diffraction-free
wave packet propagation [10,11]. In this regard, a particu-
larly important system is put forward by arrays of evan-
escently coupled waveguides, where it was shown that the
concept of inhibited light tunneling is possible not only via
lattice soliton formation [12–15] but also due to a harmonic
bending of the waveguides yielding either dynamic local-
ization [16–20] or coherent destruction of tunneling
[21,22]. However, while dynamic localization occurs
only in systems without boundary interaction, coherent
destruction of tunneling was achieved only in a two-
waveguide system due to analogies with surface states in
curved lattices [23].

In this Letter we demonstrate that a harmonic out-of-
phase modulation of the linear refractive index along the
propagation direction yields the almost perfect inhibition
of the light tunneling between adjacent guiding channels
irrespective of the input position in finite and infinite
arrays. When the frequency and amplitude of the modula-
tion are properly chosen, the band of quasienergies is
considerably narrowed, forcing the light to remain in the
excited channel. This phenomenon is possible in the cou-
pler geometry, at the edge and in the interior of waveguide
arrays. At intermediate power levels, the light partially
delocalizes and eventually relocalizes again due to soliton
formation at high power levels.

To gain intuitive insight, we start our analysis by study-
ing the dimensionless equations describing propagation of

light in the waveguide array in tight-binding approxima-
tion:

i
dqm
d�

þ ð�1Þm� sinð��Þqm
þ Cðqmþ1 þ qm�1Þ þ �qmjqmj2 ¼ 0; (1)

which describes the evolution of the amplitude in the mth
waveguide qm, with light tunneling into adjacent guides
with the tunneling rate C and the nonlinearity constant �.
The value 1>� � 0 is the relative depth of the harmonic
longitudinal modulation, while � is its spatial frequency.
The modulation of the refractive index between the adja-
cent guiding channels is out of phase. The transformation
hm ¼ qm exp½ið�1Þm� cosf��g=�� yields

i
dhm
d�

þ Cðhmþ1 þ hm�1Þ exp½2i� cosð��Þ=��
þ �hmjhmj2 ¼ 0: (2)

When using the expansion exp½2i� cosð��Þ=�� ¼P
ki

kJkð2�=�Þ expðik��Þ in terms of Bessel functions
and neglecting all orders except k ¼ 0, one finds that
diffraction vanishes when ð2�=�Þ ¼ �j with �j �
2:4; 5:5; . . . being roots of the zero-order Bessel function.
Hence, for a fixed modulation depth �, such crude ap-
proximation predicts that there are resonance frequencies
at which light tunneling is inhibited. In the limiting case of
a linear optical coupler (� ! 0) when only the first channel
is exited with unit amplitude, the solution of Eq. (2) is
jh1ð�Þj2 ¼ ½1þ cosð2��Þ�=2, where the coupling constant
� ¼ CJ0ð2�=�Þ is reduced by the factor J0ð2�=�Þ. The
distance-averaged power fraction guided in the excited
channel Um ¼ L�1

R
L
0 jh1ð�Þj2d� can be found analyti-

cally as Um ¼ f1þ sinc½2CLJ0ð2�=�Þ�g=2. Thus, around
the zeroes of the Bessel function, the power fraction
can be estimated as Um ’ 1� C2L2J20ð2�=�Þ=3. When

J0ð2�=�Þ ! 0, the localization is complete. In the non-
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linear case, tunneling inhibition implies a decreasing of the
critical power Pcr ¼ 4CJ0ð2�=�Þ=�, which is propor-
tional to the reduction of the coupling constant. In the
under-critical nonlinear case the period of the power oscil-
lations is defined by an elliptic integral of the first kind; it
grows monotonically and diverges as the input power P0

approaches the critical one. The corresponding solution of
Eq. (2) is jh1ð�Þj2 ¼ ½1þ cnð2��; kÞ�=2, where k ¼
P2
0=P

2
cr. In the general case, localization is described by

the Floquet-Bloch formalism, in which every excitation is
a superposition of discrete Bloch waves [24]. The entire set
of Bloch waves results in the formation of quasienergy
bands, yielding spatial dispersion and, therefore, light tun-
neling into adjacent guides. At the resonance condition the
bands flatten, preventing light from spreading into the
array. Tunneling inhibition cannot be exact [24].

To elucidate a more rigorous dynamic we conducted
simulations with the nonlinear Schrödinger equation for
the dimensionless field amplitude q, which describes the
propagation of light along the � axis of waveguide array
under the assumption of cw radiation:

i
@q

@�
¼ � 1

2

@2q

@�2
� jqj2q� pRð�; �Þq: (3)

Here � and � are the transverse and longitudinal co-
ordinates, while the parameter p describes the refrac-
tive index modulation depth. The refractive index profile

of the lattice is given by Rð�; �Þ ¼ PðM�1Þ=2
m¼�ðM�1Þ=2½1þ

ð�1Þm� sinð��Þ� exp½�ð��mwsÞ6=w6
��. The super-

Gaussian refractive index profile of the individual channels
is fitted to the shape of the fabricated waveguides [25] and
is characterized by the normalized width w�. The parame-

ter ws stands for the waveguide spacing, andM is the total
number of the guiding channels. As the input condition we
used A expð��2=W2Þ with W being the beam width. For
the fixed propagation distance L, the quality of the local-
ization was characterized by the distance-averaged power
fraction trapped in the excited waveguide channel Um ¼
L�1

R
L
0 d�

Rws=2
�ws=2

jqð�; �Þj2d�=Rws=2
�ws=2

jqð�; 0Þj2d�.
Our samples were fabricated using a femtosecond-

writing method (see [15] for full details of the fabrication
method). In addition to the high flexibility of this method
concerning the waveguide paths, a high degree of freedom
is also possible for the refractive index distribution of the
individual guides. Since the index modulation of the single
lattice sites crucially depends on the writing velocity, one
can particularly introduce an out-of-phase longitudi-
nal harmonic modulation of the trapping channels by
varying slightly the writing speed for each waveguide.
Since the average writing velocity was �1750 �m=s, the
focusing nonlinearity is spatially uniform (n2 ¼
2:7� 10�20 m2=W). In all our samples the width of the
individual guides amounts to 3 �m, which is equivalent to
w� ¼ 0:3. We fabricated two kinds of waveguide arrays:

one having the spacing of 14 �m (ws ¼ 1:4) and the

length L ¼ 40 mm for low-power experiments at the vis-
ible wavelength � ¼ 633 mm and the other one with spac-
ing 36 �m (ws ¼ 3:6) and length L ¼ 105 mm for
analyzing the high-power propagation of a fs laser beam
of a Ti:sapphire laser at � ¼ 800 nm. The first sample
allows for the direct observation of the linear propagation
inside our arrays using a special fluorescence technique
[25], while in the second one the spacing of the lattice sites
was increased so that the nonlinearity can overcome the
evanescent coupling. Nevertheless, the excitation at a
higher wavelength and the increased length of the guides
in the latter sample yield a similar net diffraction in both
arrays which ensures the comparability of the samples.
In a first step we demonstrate the light tunneling inhibi-

tion in a two-waveguide coupler. To evaluate the specific
frequency of the longitudinal refractive index modulation,
we fabricated a nonmodulated optical coupler (� ¼ 0),
whose low-power propagation pattern is shown in
Fig. 1(a) at � ¼ 633 nm. The simulations shown in
Fig. 1(b) yield the refractive index modulation depth
�4� 10�4. The measured intensity beating frequency
was �b ¼ 0:386 mm�1. On the basis of these values we
calculated the optimal longitudinal modulation frequency
of the refractive index yielding maximalUm in a coupler to
be�r=�b ¼ 1:25 at� ¼ 0:2. Figure 1(c) shows the linear
light tunneling inhibition in our samples in comparison
with the corresponding modeling results [Fig. 1(d)].
When solving Eq. (3) one obtains that the frequency of

the principal resonance grows monotonically with �
[Fig. 2(a)] and tends to �b=2 at � ! 0. Additionally, the
dependence of Um on the modulation frequency is non-
trivial, exhibiting several resonance peaks [Fig. 2(b)]. Both
results are well fitted by the discrete model [Eq. (1)], in
which the light tunneling inhibition in a two-waveguide
geometry corresponds to the degeneracy point of the
propagation constants of the �-periodic Floquet-Bloch
states. In particular the well-defined resonance peak in
Fig. 2(b) corresponds to the first root of J0ð2�=�Þ ¼ 0.
Therefore, the main factor for tunneling inhibition is the

FIG. 1 (color online). Experimental [(a), (c)] and theoretical
[(b), (d)] intensity distributions for low-power excitation of the
dual-core coupler. The upper edge of each panel corresponds
to the input facet, the lower edge to the output facet. Panels (a)
and (b) show an unmodulated coupler, while panels (c) and (d)
correspond to a modulated coupler with �=�b ¼ 1:25 and
� ¼ 0:2.
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periodic phase shift of the propagating modes introduced
in Eq. (1). However, note that the additional factor appears
only in the continuous model: The fundamental mode
profile of a waveguide breathes following the � oscillations
of the waveguide depth as is readily visible in Fig. 1(d),
which is not included in the discrete model of Eq. (1).
Accordingly, this results in a more complicated resonance
curve.

As mentioned above, nonlinearity slows down the power
oscillations (see [26] for details). Therefore, if the modu-
lation frequency is equal to or lower than the resonant one
(� � �r), an increase of the normalized peak intensity A2

of the input beam shifts the power oscillations’ frequency
away from the resonance peak, thus leading to initial
delocalization, while relocalization appears at higher
powers due to soliton formation [see Fig. 2(c) where �
matches the principal linear resonance]. For� ¼ 0:1when
�r ¼ 0:76�b, the minimal localization corresponds to
different amplitudes A2 ¼ 0:70, 0.82, 0.90 for �=�b ¼
0:66, 0.71, 0.76, respectively, but for all these frequencies
relocalization occurs approximately for the same ampli-
tude A2 ’ 1:05. In contrast, when �>�r nonlinearity
shifts the frequency of power oscillations towards resonant
values, thus producing localization enhancement from the
very beginning. For example, at � ¼ 0:1, �r ¼ 0:76�b

the localization maximum appears at A2 ¼ 0:46 and 0.70
for�=�b ¼ 0:81 and 0.86, respectively. These amplitudes
are smaller than the critical value A2 ’ 1:4 at which local-
ization occurs in the unmodulated coupler (� ¼ 0), a result
that indicates that out-of-phase longitudinal modulation of
the refractive index might be used for fine-tuning the
localization threshold power.

When these results were analyzed for a waveguide array
(M ¼ 13, as in the experiment), we found out that the
linear resonance curves are qualitatively similar for exci-
tations of the edge channel and central channel [compare
curves 1 and 2 in Fig. 2(d)]. However, the principal peak is
more pronounced in the case of the edge channel excita-
tion, because of the diminished discrete diffraction.
Besides the most pronounced principal resonance at �r �
1:30�b, additional weaker peaks appear close to the frac-
tional frequencies �r=2;�r=3; . . . . The data of simula-
tions were used for the optimization of the modulation
frequency of fabricated arrays. We found numerically
that for a modulation depth of � ¼ 0:2 the optimal longi-
tudinal frequency is �r � 1:30�b for the surface channel
excitation and �r � 1:38�b when a waveguide in the
array center is excited. Figure 3 compares the light propa-
gation in nonmodulated and optimally modulated wave-
guide arrays for the edge [panels (a), (b)] and central
channel [panels (c), (d)] excitations. This is a generaliza-
tion of the tunneling control in a double-well potential.
Because of the modulation of the refractive index the
Floquet-Bloch modes exhibit almost identical quasiener-
gies, irrespective of the number of waveguides in the
system or the position of excitation. Note that the possi-
bility of linear light localization in the bulk or at the surface
of arrays expands the opportunities for diffraction control
and spatiospectral selectivity of light localization.
To observe the impact of nonlinearity we monitored the

power-dependent tunneling inhibition with femtosecond-
pulsed radiation (�pulse ¼ 150 fs) of a Ti:sapphire laser. In

FIG. 3 (color online). Experimental (top) and theoretical (bot-
tom) intensity distributions in an array for low-power excitation
of surface waveguide [columns (a), (b)] and center waveguide
[columns (c), (d)]. Panels (a) and (c) show unmodulated arrays;
panels (b) and (d) show modulated arrays (� ¼ 0:2) with
�=�b ¼ 1:3 for surface waveguide excitation and �=�b ¼
1:38 for the excitation in the array center.

FIG. 2. (a)�r=�b versus � for a linear coupler. (b) Um versus
�=�b in a linear coupler at � ¼ 0:2. (c) Um versus A2 in a
coupler at � ¼ 0:1 and �=�b ¼ 0:76. (d) Um in the surface
channel (curve 1) or in the bulk (curve 2) of a linear array versus
�=�b at � ¼ 0:2.
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the experiments we used a longitudinal modulation depth
of� ¼ 0:15 and a longitudinal frequency of�r � 1:05�b

for surface excitation and �r � 1:07�b for the excitation
of the center waveguide. In Fig. 4 every subplot consists of
a theoretical panel, showing the light intensity spatial
distribution inside the sample, on top of the photograph
of the experimentally observed output patterns. Columns
(a) and (c) show the transformation of light tunneling in a
nonmodulated array to a soliton-type tunneling inhibition
with increasing input power; columns (b) and (d) illustrate
linear tunneling inhibition in a modulated array, partial
delocalization at intermediate power level, and finally
soliton formation at high input power. This behavior cor-
responds to the simulations of the power dependence of the
localization parameter Um. At low power, the resonant
light propagation results in the inhibition of light diffrac-
tion. For an increased intermediate power, the nonlinear
influence distorts tunneling inhibition, so that light can
couple from the excited into the adjacent guides.
However, at high input power, a solitonlike localization
occurs due to the Kerr effect. It is interesting to note that
this is a representation of a diffraction-managed soliton,
which was demonstrated experimentally only recently
[27]. However, in our system it is possible to obtain soliton
formation not only for higher power (when the resonance
condition is satisfied) but also for decreased power (when
the propagation is slightly off-resonant and the resonance
curve is broadened by the nonlinear influence).

In conclusion, we observed experimentally light tunnel-
ing inhibition in waveguide arrays with a harmonic out-of-
phase longitudinal modulation of the refractive index. The
setup is a generalization of a double-well potential and
allows full control of tunneling in an extended potential.
The results indicate that resonant phenomena accessible in
longitudinally modulated structures open new ways for the
control of light propagation.
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FIG. 4 (color online). Experimental
and theoretical intensity distributions
for surface [(a), (b)] and center [(c),
(d)] waveguide excitations. Theoretical
plots, showing the propagation dynamics
inside the sample, are placed on top of
photographs showing experimental out-
put intensity distributions. Panels (a) and
(c) correspond to the unmodulated ar-
rays, while in (b) � ¼ 0:15 and
�=�b ¼ 1:05, and in (d) � ¼ 0:15 and
�=�b ¼ 1:07. The peak powers from
top to bottom are (a) 0.16 MW,
0.93 MW, and 1.41 MW, (b) 0.16 MW,
0.88 MW, and 1.60 MW, (c) 0.16 MW,
0.85 MW, and 1.41 MW, and
(d) 0.16 MW, 1.01 MW, and 2.13 MW.
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