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We report the first observation of Young-type interference effects in a two-electron transfer process.

These effects change strongly as the projectile velocity changes in fast (1.2 and 2.0 MeV) He2þ þ H2

collisions as manifested in strong variations of the double-electron capture rates with the H2 orientation.

This is consistent with fully quantum mechanical calculations, which ignore sequential electron transfer,

and a simple projectile de Broglie wave picture assuming that two-electron transfer probabilities are

higher in collisions where the projectile passes close to either one of the H2 nuclei.
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The wave-particle duality is inherently fundamental to
quantum mechanics. This is often illustrated by two-slit
interference phenomena, where the passage of a specific
slit, an aperture or some localized region in space often is
linked to particlelike behavior while the interference of
probability amplitudes of two paths describes the wavelike
behavior. Well-known examples are Young’s original two-
slit experiment [1] and its followers where the latter have
demonstrated interferences of ‘‘particles’’ like, e.g., elec-
trons [2,3], neutrons [4], atoms [5], and molecules [6,7].
Important aspects here are that the interferences only
are observed with both slits open and that the interference
patterns remain also when the rates are so low that only
single particles at the time may be inside the appara-
tus [2,3]. In this Letter, we report the first observation
of molecular two-center interference effects for double-
electron capture (here in fast He2þ þ H2 collisions). In a
remarkable way, this also sheds light on the double-
electron transfer mechanism itself.

In 2008, we reported on strong interference effects in
fast Hþ þ H2 collisions when only one electron is trans-
ferred to a fast Hþ ion to form an (almost) equally fast
neutral H0 atom and a very slow, excited, H2

þ target ion
[8]. The orientation of the H2 molecule at the time of the
collision was obtained via the determination of the mo-
mentum vector of the slow proton from H2

þ dissociation.
Interference effects manifested themselves as an orienta-
tion dependent variation of both the transfer excitation rate
[9] and, notably, of the distribution of the H0 hits on the
detector [8]. Qualitatively, these observations could be
explained by considering the very small shifts in the pro-
jectile de Broglie wavelength related to one-electron trans-
fers occurring efficiently only for trajectories close to
either one of the H2 target nuclei [10]. In this approach,
however, it had to be assumed that the dissociation part in
the transfer excitation process could be treated as being

separate from the electron transfer part as the variation of
the cross section (with molecular angle) was found to be
similar to those calculated earlier for single-electron cap-
ture (using fully quantum mechanical [10–12] and semi-
classical [13,14] methods). Clearly, however, some
uncertainty still remained concerning the exact role of
the second active electron. With the present experiment,
such ambiguities are removed since both electrons in the
He2þ þ H2 system are transferred to the projectile.
The presently investigated interference in double-

electron capture from H2 molecules exhibits maxima of
the cross section for perpendicular molecular orientations
with respect to He2þ beams at 1.2 and 2.0 MeV. This is
very interesting as the naive picture of sequential electron
transfer, where the projectile interacts independently close
to both of the target nuclei, rather should give maxima for
orientations parallel to the ion beams. Nevertheless, and in
spite of the fact that we are dealing with double-electron
capture, we do observe one of the strongest interference
effects measured to date in any molecular two-slit experi-
ment and a strong velocity dependence. These results
compare favorably with parallel fully quantum mechanical
calculations of the Oppenheimer-Brinkmann-Kramers
(OBK) type [15] and with the simple projectile de
Broglie wave description, but only if it is assumed that
both electrons are transferred together in collisions where
the projectile passes close to either of the target nuclei. One
earlier measurement of double-electron capture in He2þ þ
H2 collisions was carried out by Martı́nez et al. [16] at
much lower energies (100 and 400 keV) and only for two
fixed molecular orientations of 10� and 90� with respect to
the ion beam. At even lower energies, interferences for
simultaneous two-electron transfer have been observed but
then only for a one-center (atomic) target [17–19].
Molecular double-slit experiments have also shown in-

terference effects in electron emission in energetic colli-
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sions with ions [20–22], electrons [23], and photons [24–
26]. In [26], interferences in the sum momentum of both
electrons in photo-double ionization of H2 was observed
and interpreted as being related to the small fraction of the
H2 ground state for which both electrons are centered on
the same nucleus. Very recently, Schmidt et al. [27] ob-
served nicely resolved interference patterns in the trans-
verse momentum transfer to Heþ in final-state resolved
measurements on dissociative single-electron capture in
10 keV H2

þ þ He collision and, in addition, they observed
changes in these patterns with changing internuclear sepa-
ration in H2

þ [27].
The present experiment was performed in the ion storage

ring CRYRING at Stockholm University (see Ref. [8] and
references therein). The He2þ ions were injected, acceler-
ated, stored and electron cooled [28] at energies of 1.2 and
2.0 MeV. These He2þ beams were crossed with a super-
sonically cooled H2 jet [29]. Resulting molecular target
ions H2

2þ, produced by double-electron capture to He2þ,
Coulomb explode as two back-to-back protons with equal
energies of about 9 eV. These 9 eV protons were then
extracted perpendicular to the projectile beam and the
gas jet in a Recoil-Ion-Momentum Spectrometer [30–32]
and one of them was detected by a 2D position sensitive,
resistive anode detector with 60% of its active area covered
by a foil (c.f. Fig. 1). The fast, neutralized, He0, atom was
detected in coincidence by a similar detector (projectile
detector) 3.2 meters downstream of the collision region.

The projectile detector signal was used to start a multihit
time-to-digital converter (TDC) while the stop signal was
generated from a proton hit on the recoil-ion detector. For

each event the position and the time-of-flight for the proton
was recorded. All parameters (times and positions) were
stored in list mode. The full three-dimensional momentum
vectors (mvx, mvy, mvz) of the single 9 eV protons were

then deduced using the position on the recoil detector with
respect to the spectrometer axis and the time-of-flight [33].
In our energy range 300–500 keV=u, the collision times
are much shorter than the H2 vibrational and rotational
times and, thus, the molecule may be viewed as frozen
during the collision. Furthermore, the axial recoil approxi-
mation [34,35] is valid, i.e., the short time scale for disso-
ciation (few fs) compared to that for rotations (few ps)
strongly indicates that the momentum vector of the single
9 eV proton gives the direction of the molecular axis in the
collision.
For our projectile velocities of vp ¼ 3:46 and 4.46 a.u.,

single ionization (SI), double ionization (DI), single cap-
ture (SC), transfer excitation (TE) and transfer ionization
(TI) event rates are together way larger than the double-
capture (DC) rate. Therefore, they may in principle give
high random stop signal rates and make it difficult to
record the true DC coincidences. However, the strongly
dominating SI events give very small momentum transfers
and thus the corresponding recoil ions would be concen-
trated in a small area close to the center of the detector and
are stopped by the foil. (A similar technique has been
successfully used before [36].) This tremendously im-
proves the signal-to-noise ratio of the coincidence spec-
trum. As we only detect one 9 eV proton from each H2

2þ
Coulomb explosion, we only record half of the angular
distribution. However, except for angles close to � ¼ 90�
no information is lost due to the symmetry of the process
(� is the angle between the molecular axis and the ion
beam). In Fig. 1, we show a schematic of the experimental
arrangement, and the maximum, foil-limited, acceptance
angle of � ¼ 75� is indicated.
In Fig. 2, we show d�=dðcos�Þ, as functions of cos�,

where we have integrated over the full kinetic energy
release distributions of the H2

2þ dissociation. The shaded

region, for which 75� � � � 105� and thus �0:22 �
cos� � 0:22 (c.f. Fig. 1), is inaccessible due to the foil as
seen from the very low measured intensities in this region.
The data points for 0:22 � cos� � 1:0were mirrored from
the measured values for �0:22 � cos� � �1:0. The ex-
perimental cross section for 300 keV=u (filled triangles in
Fig. 2) increases monotonically from � ¼ 0� to 90� and
from 180� to 90�. This behavior changes strongly at
500 keV=u where the cross section goes through a strong
oscillation (open squares) which becomes even more pro-
nounced (not shown) when selecting the lower part of the
kinetic energy release distribution for the H2

2þ fragmen-

tation. The solid curves in Fig. 2 are our theoretical, fully
quantum mechanical, OBK type calculations for double-
electron capture from H2 by He2þ ions. They are based on
a simple model incorporating a linear combination of
products of hydrogenic 1s wave functions to describe the

FIG. 1 (color online). Schematics of the experimental setup.
The extraction, acceleration and drift regions are not shown to
scale. The position sensitive detector is partly covered (�60%)
by a foil. With this arrangement, random coincidences due to
single ionization are avoided. Coulomb explosions for molecular
axis orientation, �, in the range 75� � � � 105� cannot be
detected (c.f. text).
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two-electron two-center state of the H2 molecule. In this
OBK approach, the transfer of the two electrons can be
understood as follows: one electron is captured as a result
of the direct interaction with the projectile close to one of
the nuclei, while the transfer of the other electron becomes
possible through the nonzero overlap between the target
and projectile states in a ‘‘shakeover’’ process—and thus
this other electron does not need to be from a region close
to a nucleus. Note that neither (the small) two-electron,
one-center, component (non-Heitler-London part) of the
H2 ground state wave function, nor the sequential two-
electron transfer is included in this OBK calculation. Still,
the main features of the experimental results are repro-
duced (c.f. Fig. 2).

In a second, more qualitative approach, the experimental
results are fitted with the function

d�=dðcos�Þ ¼ A½1þV cosðc��Þ�; (1)

where A, V , and c are free parameters. Here, �� is the
expected phase shift between two projectile de Broglie
waves emerging from the molecular centers [8,11] and

�� ¼ ~�k ~a (2)

when we assume that both electrons are captured when the
projectile is in the vicinity of either H2-target nucleus
(internuclear vector ~a). For small projectile deflection
angles the momentum change is

�k � �kk ¼ n
vp

2
þQ=vp; (3)

whereQ is the inelasticity. For vp � 4 a:u: andQ� 1 a:u:,

�kk � nvp=2 ¼ vp for a two-electron transfer. Using this

and Eq. (2) in Eq. (1) we reproduce the present experimen-
tal results (c.f. dotted curves in Fig. 2).

Based on the similarity of the presently observed oscil-
latory behavior for double-electron capture, with theoreti-
cal single-electron capture [10–12], and experimental

transfer excitation cross sections [9], it appears that the
mechanisms behind these three processes have important
features in common. In Fig. 3 we thus compare our DC
results with those of Støchkel et al. [9] for theHþ þ H2 TE
process. In Figs. 3(a)–3(d), we show the TE results [9] for
1300 keV=u, 1000 keV=u, 700 keV=u, and 300 keV=u
corresponding to perturbation strengths Sp ¼ q=vp ¼
0:14–0:29 (q is the projectile charge state). Figures 3(e)
and 3(f) show the present He2þ þ H2 DC results for
500 keV=u and 300 keV=u (Sp ¼ 0:45 and 0.58). The

curves are fits [Eq. (1)] and the vertical dotted lines in-
dicate �� ¼ �� where the first minimum is expected for
destructive interference in the exact forward scattering
direction of the projectile [12] and c ¼ 1 in Eq. (1). The
positions of the measured minima do, however, vary sys-
tematically from the top to the bottom panel. There is a
very slight deviation from ��, for Sp ¼ 0:14 while a

much larger deviation is found for Sp ¼ 0:58. This effect

can be studied in a somewhat more quantitative manner as
a function of c [c.f. Eqs. (1) and (2)] or the ‘‘effective slit
distance’’, d ¼ ca, for a one- and two-electron capture
fromH2. The latter is related to two separate spatial regions
in H2 within which projectile trajectories should pass for
electron transfer to become more favored than otherwise.
In Fig. 4, d is very close to a ¼ 1:41a0 (a0 is the Bohr
radius) for our smallest value of Sp, while it decreases
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FIG. 3 (color online). Panels (a)–(d) experimental results for
1300 keV=u� 300 keV=u protons on H2—the TE process, from
Ref. [9]. Panels (e),(f) present results for 500 and 300 keV=u
He2þ on H2—the DC process. Curves are fitted functions
[Eq. (1)] to the experimental data (filled squares). Vertical dotted
lines at �� show the expected positions for the first minima
according to Eqs. (1)–(3) with c ¼ 1.
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FIG. 2 (color online). Molecular axis orientation-angle depen-
dent differential cross sections for 300 and 500 keV=u He2þ þ
H2 double-electron capture reactions at 300 (filled triangles) and
500 keV=u (open squares). The dotted curves are fits [Eq. (1)] to
the experimental data. The solid curves are the present OBK
results, which should be multiplied by 8:4	 10�21 cm2 and
4:8	 10�23 cm2 for absolute scales at 300 and 500 keV=u,
respectively.
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rather strongly with increasing Sp. The latter concerns two-

electron capture and may be qualitatively understood in the
following way: The probability density of the target elec-
tron cloud is higher at a given distance from one nucleus
and between the two nuclei than at the same distance from
the same nucleus in the other direction. This presumably
also means that the two-electron transfer probability is
asymmetric with respect to either target nucleus and that
it is higher between them. In principle, this implies an
effective slit (or scattering center) separation smaller than
a. The larger the two localized regions within which such
simultaneous two-electron transfer processes are effective
(i.e., the larger Sp is), the larger the deviation from a slit

distance equal to the internuclear separation for H2 be-
comes. To a large extent, the variation with Sp displayed in

Fig. 4 may thus be attributed to larger capture radii (with
respect to either nucleus) and lower impact velocities for
the present He2þ þ H2 study of two-electron capture in
relation to the Hþ þ H2 TE case [8,9] (where one electron
is transferred).

In this Letter, we report on double-electron capture from
H2 molecules. We observe a strong oscillatory behavior of
the cross section as a function of the molecular orientation
which, furthermore, significantly varies when the projectile
velocity is reduced by only 20%. The observed features are
attributed to Young-type interference effects arising from
the two-center nature of H2 which is, for the first time,
observed for double-electron capture from molecular tar-
gets. Our theoretical model calculation, based on the OBK
approximation and incorporating a two-electron, two-
center wave function for the H2 ground state, qualitatively
reproduces the experimental results when neither the non-
Heitler-London part of theH2 wave function nor sequential
electron transfer processes are included. This thus defies
the naive intuitive picture of two sequential electron trans-
fers and, instead, it indicates that the two electrons are
captured in a correlated fashion for projectile trajectories
close to either target nucleus.
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FIG. 4 (color online). Effective distance, d, between two fa-
vored regions for electron transfer from the H2 molecule as seen
by the incoming Hþ and He2þ ions as functions of the perturba-
tion strength Sp ¼ q=vp (c.f. text).
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